Closing Thoughts

Testing both the IBM POWER8 and the Intel Xeon V4 with an unbiased compiler gave us answers to many of the questions we had. The bandwidth advantage of POWER8's subsystem has been quantified: IBM's most affordeable core can offer twice as much bandwidth than Intel's, at least if your application is not (perfectly) vectorized.

Despite the fact that POWER8 can sustain 8 instructions per clock versus 4 to 5 for modern Intel microarchitectures, chips based on Intel's Broadwell architecture deliver the highest instructions per clock cycle rate in most single threaded situations. The larger OoO buffers (available to a single thread!) and somewhat lower branch misprediction penalty seem to the be most likely causes.

However, the difference is not large: the POWER8 CPU inside the S812LC delivers about 87% of the Xeon's single threaded performance at the same clock. That the POWER8 would excel in memory intensive workloads is not a suprise. However, the fact that the large L2 and eDRAM-based L3 caches offer very low latency (at up to 8 MB) was a surprise to us. That the POWER8 won when using GCC to compile was the logical result but not something we expected.

The POWER8 microarchitecture is clearly built to run at least two threads. On average, two threads gives a massive 43% performance boost, with further peaks of up to 84%. This is in sharp contrast with Intel's SMT, which delivers a 18% performance boost with peaks of up to 32%. Taken further, SMT-4 on the POWER8 chip outright doubles its performance compared to single threaded situations in many of the SPEC CPU subtests.

All in all, the maximum throughput of one POWER8 core is about 43% faster than a similar Broadwell-based Xeon E5 v4. Considering that using more cores hardly ever results in perfect scaling, a POWER8 CPU should be able to keep up with a Xeon with 40 to 60% more cores.

To be fair, we have noticed that the Xeon E5 v4 (Broadwell) consumes less power than its formal TDP specification, in notable contrast to its v3 (Haswell) predecessor. So it must be said that the power consumption of the 10 core POWER8 CPU used here is much higher. On paper this is 190W + 64W Centaur chips, versus 145W for the Intel CPU. Put in practice, we measured 221W at idle on our S812LC, while a similarly equipped Xeon system idled at around 90-100W. So POWER8 should be considered in situations where performance is a higher priority than power consumption, such as databases and (big) data mining. It is not suited for applications that run close to idle much of the time and experience only brief peaks of activity. In those markets, Intel has a large performance-per-watt advantage. But there are definitely opportunities for a more power hungry chip if it can deliver significantly greater performance.

Ultimately the launch of IBM's LC servers deserves our attention: it is a monumental step forward for IBM to compete with Intel in a much larger part of the market. Those servers seem to be competitively priced with similar Xeon systems and can access the same Little Endian data as an x86 server. But can POWER8 based system really deliver a significant performance advantage in real server applications? In the next article we will explore the S812LC and its performance in a real server situations, so stay tuned.

Multi-Threaded Integer Performance: SPEC CPU2006
Comments Locked

124 Comments

View All Comments

  • jospoortvliet - Tuesday, July 26, 2016 - link

    The point Johan makes is that his goal is not to get the best bechmark scores but the most relevant real life data. One can argue if he succeeded, certainly the results are interesting but there is much more to the CPU's as usual. And I do think his choice is justified, while much scientific code would be recompiled with a faster compiler (though the cost of ICC might be a problem in a educational setting), many businesses wouldn't go through that effort.

    I personally would love to see a newer Ubuntu & GCC being used, just to see what the difference is, if any. The POWER ecosystem seems to evolve fast so a newer platform and compiler could make a tangible difference.
    But, of course, if you in your usecase would use ICC or xLC, these benches are not perfect.
  • Eris_Floralia - Friday, July 22, 2016 - link

    Are these two processor both tested at the same frequency?or at their stock clock?
  • tipoo - Friday, July 22, 2016 - link

    The latter, page 5

    2.92-3.5 GHz vs 2.2-3.6 GHz
  • abufrejoval - Thursday, August 4, 2016 - link

    Well since Johan really only tested one core on each CPU, it would have been nice to have him verify the actual clock speed of those cores. You'd assume that they'd be able to maintain top speed for any single core workload independent of the number of threads, but checking is better than guessing.
  • roadapathy - Friday, July 22, 2016 - link

    22nm? *yawwwwwwwwwn* Come on IBM, you can do better than that, brah.
  • Michael Bay - Saturday, July 23, 2016 - link

    Nope, 22 is the best SOI has right now. You have to remember it`s nowhere near standard litographies customer-wise.
  • tipoo - Monday, July 25, 2016 - link

    In addition to what Michael Bay (lel) said, remember that only Intel really has 14nm, when TSMC and GloFlo say 14/16nm they really mean 20nm with finfetts.
  • feasibletrash0 - Saturday, July 23, 2016 - link

    using a less capable compiler (GCC) to test a chip, and not using everything the chip has to offer seems incredibly flawed to me, what are you testing exactly
  • aryonoco - Saturday, July 23, 2016 - link

    He's testing what actual software people actually run on these things.

    On your typical Linux host, pretty most everything is compiled with GCC. You want to get into exotic compilers? Sure both IBM and Intel have their exotic proprietary costly compilers, so what. Very few people outside of niche industries use them.

    You want to compare a CPU with CPU? You keep the compiler the same. That's just common sense. It's also how the scientific method works!
  • feasibletrash0 - Sunday, July 24, 2016 - link

    right, but you're comparing, say 10% of the silicon on that chip, and saying that the remaining 90% of the transistors making the chip does not matter, they do; if the software is not using them, that's fine, but it's not an accurate comparison of the hardware, it's a comparison of the software

Log in

Don't have an account? Sign up now