Decision Support benchmark: Nieuws.be

Decision Support benchmark Nieuws.be
Operating System Windows 2008 Enterprise RTM (64 bit)
Software SQL Server 2008 Enterprise x64 (64 bit)
Benchmark software vApus + real-world "Nieuws.be" Database
Database Size > 100GB

The Flemish/Dutch Nieuws.be site is one of the newest web 2.0 websites, launched in 2008. It gathers news from many different sources and allows the reader a personalized view on all the news. The Nieuws.be site sits on top of a large database—more than 100GB and growing. This database consists of a few hundred separate tables, which have been carefully optimized by our lab (the Sizing Server Lab).

99% of the loads on the database are selects, and about 5% of them are stored procedures. Network traffic is 6.5MB/s average and 14MB/s at the most, so our Gigabit connection still has a lot of headroom. Disk Queue Length (DQL) is at 2 in the first round of tests, but we only report the results of the next rounds where the database is in a steady state. We measured a DQL close to 0 during these tests, so there is no tangible intervention of the hard disks.

Attention: since our twelve-core Opteron review, we are using a new heavier log. As the Nieuws.be application became more popular and more complex, the database has grown and queries have become more complex too. The results are no longer comparable to previous results. They are similar, but much lower.

Nieuws.be MS SQL Server 2008—New Heavy log!

First, you may notice that our dual Xeon X5670 is 6% higher compared to what we reported in our twelve-core Opteron review. As we changed the benchmark and tested a lot of configurations in less than a week (before the launch of the Magny-Cours Opteron), we made an error. We tested with the power option set at "balanced power", which lowered the score of the Xeon X5670. We now tested with the "high performance" power setting, as we did on the Opterons.

Our data mining benchmark scales well with more cores, so the performance delivered by the X7560 is a bit lower than expected. The high memory latency and relatively low bandwidth per core might slow the octal-core Xeon down.

Understanding the Performance Numbers SAP S&D 2-Tier
POST A COMMENT

23 Comments

View All Comments

  • dastruch - Monday, April 12, 2010 - link

    Thanks AnandTech! I've been waiting for an year for this very moment and if only those 25nm Lyndonville SSDs were here too.. :) Reply
  • thunng8 - Monday, April 12, 2010 - link

    For reference, IBM just released their octal chip Power7 3.8Ghz result for the SAP 2 tier benchmark. The result is 202180 saps for approx 2.32x faster than the Octal chipNehalem-EX Reply
  • Jammrock - Monday, April 12, 2010 - link

    The article cover on the front page mentions 1 TB maximum on the R810 and then 512 GB on page one. The R910 is the 1TB version, the R810 is "only" 512GB. You can also do a single processor in the R810. Though why you would drop the cash on an R810 and a single proc I don't know. Reply
  • vol7ron - Tuesday, April 13, 2010 - link

    I wish I could afford something like this!

    I'm also curious how good it would be at gaming :) I know in many cases these server setups under-perform high end gaming machines, but I'd settle :) Still, something like this would be nice for my side business.
    Reply
  • whatever1951 - Tuesday, April 13, 2010 - link

    None of the Nehalem-EX numbers are accurate, because Nehalem-EX kernel optimization isn't in Windows 2008 Enterprise. There are only 3 commercial OSes right now that have Nehalem-EX optimization: Windows Server R2 with SQL Server 2008 R2, RHEL 5.5, SLES 11, and soon to be released CentOS 5.5 based on RHEL 5.5. Windows 2008 R1 has trouble scaling to 64 threads, and SQL Server 2008 R1 absolutely hates Nehalem-EX. You are cutting Nehalem-EX benchmarks short by 20% or so by using Windows 2008 R1.

    The problem isn't as severe for Magny cours, because the OS sees 4 or 8 sockets of 6 cores each via the enumerator, thus treats it with the same optimization as an 8 socket 8400 series CPU.

    So, please rerun all the benchmarks.
    Reply
  • JohanAnandtech - Tuesday, April 13, 2010 - link

    It is a small mistake in our table. We have been using R2 for months now. We do use Windows 2008 R2 Enterprise. Reply
  • whatever1951 - Tuesday, April 13, 2010 - link

    Ok. Change the table to reflect Windows Server 2008 R2 and SQL Server 2008 R2 information please.

    Any explanation for such poor memory bandwidth? Damn, those SMBs must really slow things down or there must be a software error.
    Reply
  • whatever1951 - Tuesday, April 13, 2010 - link

    It is hard to imagine 4 channels of DDR3-1066 to be 1/3 slower than even the westmere-eps. Can you remove half of the memory dimms to make sure that it isn't Dell's flex memory technology that's slowing things down intentionally to push sales toward R910? Reply
  • whatever1951 - Tuesday, April 13, 2010 - link

    As far as I know, when you only populate two sockets on the R810, the Dell R810 flex memory technology routes the 16 dimms that used to be connected to the 2 empty sockets over to the 2 center CPUs, there could be significant memory bandwidth penalties induced by that. Reply
  • whatever1951 - Tuesday, April 13, 2010 - link

    "This should add a little bit of latency, but more importantly it means that in a four-CPU configuration, the R810 uses only one memory controller per CPU. The same is true for the M910, the blade server version. The result is that the quad-CPU configuration has only half the bandwidth of a server like the Dell R910 which gives each CPU two memory controllers."

    Sorry, should have read a little slower. Damn, Dell cut half the memory channels from the R810!!!! That's a retarded design, no wonder the memory bandwidth is so low!!!!!
    Reply

Log in

Don't have an account? Sign up now