Extensions of Moore's Law

Knowing all of the technical terminology and process information is helpful, but really all of these technologies and advances in production boil down to only a few basic elements that in turn affect Intel's implementation of Moore's law.

With process and lithography size shrinking, every processor family revision provides a 30% reduction in line length.

0.7x line length every 2 years

Adding more layers, decreasing line length and decreasing gate size allows for a 50% reduction in SRAM size every processor family revision.

0.5x SRAM size every 2 years

This conveniently falls in the pattern of processor introduction from Intel for several generations now. Prescott 2M (Pentium 4 6xx) will ship with 2MB L2 cache, Prescott (Pentium 4 5xx) debuted with 1MB L2 cache, Northwood had 512KB L2 and Willamette had 256KB. The 18 month revision between Banias and Dothan also demonstrated a double in cache size. The truth is, Moore's law is in no danger in fading anytime soon - particularly through 2009 where we can continue to expect SRAM sizes to decrease by 50% every two years; thus enabling Intel to place approximately twice as many transistors on a die. Technology like trigrate transistors may even expedite SRAM density with three dimentional gates.

And on that note, we'll end our coverage of the second day of IDF Fall 2004. We still have a few more stops to make, the show floor to cover, another keynote, and AMD to see. Hopefully we will be able to dig up more juicy tidbits of tantalizing tech news for all to feast on. Right now, its time to get in a little breakfast before the next busy day of meetings and sessions begins.

Silicon and Transistor Technology
Comments Locked

21 Comments

View All Comments

  • drwho9437 - Friday, September 10, 2004 - link

    Eskimo I was jus being sloppy in my language. As I progressed. Its good to know I'm not totally nuts. The resists will be a problem because of chain length. I mean for positive resists it seems ovious as it seems to be the ratio of the native to the broken resist chain length that would matter (there solublity). For a negative resist I guess you could somehow have some very simple and short chain somehow but I would think it would still need to be of the order of nm in length. I think it will be interesting if intel or someone else can reach high yeilds on structures of 5-10nm size. That would make SETs or other quantum devices useable in the millions.
  • KristopherKubicki - Friday, September 10, 2004 - link

    ceefka: Intel is actually moving in the other direction - particularly for server products. The Memory controller is in fact getting its own tunnel on chipsets like Twin Castle. I suspect this is being done so that they can incorporate multiple memory controllers on a single motherboard.

    Kristopher
  • ceefka - Friday, September 10, 2004 - link

    Great article, Kristopher.

    7 + 17 Right on! Seems like all they're doing is shrinking, more cache and pumping the FSB.

    Where is that on die memory controller?

    It doesn't seem like much of an animal if you keep it in a cage. What they're doing at Intel is great in itself, but it needs something extra.
  • Eskimo - Thursday, September 9, 2004 - link

    #13/#14, You are correct we are now entering the arena where the actual polymer chains which make up our resists are approaching some of the features that are being printed on the wafers. As for etching keep in mind that we don't actually etch the resist. Resist after exposure is developed away in an aqueous solution. The remaining resist serves as a mask for the underlying material either protecting from ion bombardment or etches. The standard etch for today's high aspect ratio features is Reactive Ion Etching (RIE). The 193nm resists in use in leading edge lithography do not have the same etch protection capabilities that were present in DUV(248nm) and i-line(365nm) resists. A new challenge for resists is posed by the upcoming widespread adoption (even Intel might come around) of immersion lithography where the resist will be directly exposed to water in the scanner.

    As for the article itself, it seems to suggest that Intel came up with the idea of phase shift masks. When in fact they were developed in the late 70's and first put into use in the early 90's by a variety of companies. The only real news on this front is that to reach 65nm on 193nm dry systems you will definately need alternating aperature phase shift masks like the diagram describes which are very costly.

    As for the statement saying Intel did not specify what sort of oxide they are doping with carbon for their low-k dielectric it is Silicon Dioxide. Since SiO2 is so prevalent in silicon processing and so well understood we often just refer to it simply as oxide. If it was in fact another material oxidized that would've been specifed (e.g. Aluminum Oxide).

  • mkruer - Thursday, September 9, 2004 - link

    #7 Read again what I wrote, I mentioned nothing abut the SPEED, working faster =! Speed in MHz which you are apparently inferring. I was simply stating that obvious that Intel solution for the majority of its problems is to simple through more cache at it.
  • GodsMadClown - Thursday, September 9, 2004 - link

    I remeber going to a talk on the Chandra X-Ray telescope and hearing about all the craziness with mirrors that they had to go through to get the optics to work. I guess that Intel could do the same thing, but It's just getting crazy. No real content, but to make everyone aware that when you deal with EUV radiation, optics get very complex.
  • stephenbrooks - Thursday, September 9, 2004 - link

    I'm pretty sure that on the last page it should be "line width" going to 0.7x every two years, not line LENGTH! Total line length on a chip should increase 1.4x every two years because they're packing it in smaller.
  • drwho9437 - Thursday, September 9, 2004 - link

    To clarify, I mean you have to etch the resist, dry or wet, you have to do it and that has some limit, but I don't know what it might be or even what kind of etching big fabs use.
  • drwho9437 - Thursday, September 9, 2004 - link

    Humm. Aren't we going to hit the limit of resists soon? I mean the resists I know about for ebeam lithography have resolution of something like 8nm. Intel is going to do 23 with photolithography, that's impressive, you can always go to x-rays if all it was was a matter of making the photon wavelength sorter but what about the chemistry? (I'm not a chemist, I'm a physicist/EE)
  • ncage - Thursday, September 9, 2004 - link

    I read the other post and thats what i used as my reference to spell it. Dumb idea i guess ;)

Log in

Don't have an account? Sign up now