Generational Tests: Office and Web Benchmarks

For this review, as mentioned on the front page, we retested some of the older CPUs under our new methodology. We did this testing at stock frequency as well as the IPC testing to see the ultimate real world result when you add in HyperThreading and frequency into the mix. If you recall back in our Devil’s Canyon i7-4790K review, the new high 4.4 GHz frequency of the i7-4790K was a tough one to beat for the newer architecture purely because any IPC gains are nullified by the older processor having a lot more frequency. With the Broadwell based i7-5775C being at 3.7 GHz and only 65W, this is a tough task. But what about if you are still running the Sandy Bridge based i7-2600K?

Some users will notice that in our benchmark database Bench, we keep data on the CPUs we’ve tested back over a decade and the benchmarks we were running back then. For a few of these benchmarks, such as Cinebench R10, we do actually run these on the new CPUs as well, although for the sake of brevity and relevance we tend not to put this data in the review. Well here are a few of those numbers too.

Cinebench R10 - Single Threaded Benchmark

Cinebench R10 - Multi-Threaded Benchmark

x264 HD Benchmark - 1st pass - v3.03

x264 HD Benchmark - 2nd pass - v3.03

With some of these benchmarks, due to applications using new instruction sets, having the newer processors with the new instructions can make a lot of difference. Even in Cinebench R10, moving from the Core 2 Quad Q9550 to a Broadwell can get a 2.5x speed-up in this old software.

For the rest of our CPU benchmarks, here is what the landscape looks like with the most recent architectures. All of our benchmark results can also be found in our benchmark engine, Bench.

Office Performance

The dynamics of CPU Turbo modes, both Intel and AMD, can cause concern during environments with a variable threaded workload. There is also an added issue of the motherboard remaining consistent, depending on how the motherboard manufacturer wants to add in their own boosting technologies over the ones that Intel would prefer they used. In order to remain consistent, we implement an OS-level unique high performance mode on all the CPUs we test which should override any motherboard manufacturer performance mode.

Dolphin Benchmark: link

Many emulators are often bound by single thread CPU performance, and general reports tended to suggest that Haswell provided a significant boost to emulator performance. This benchmark runs a Wii program that raytraces a complex 3D scene inside the Dolphin Wii emulator. Performance on this benchmark is a good proxy of the speed of Dolphin CPU emulation, which is an intensive single core task using most aspects of a CPU. Results are given in minutes, where the Wii itself scores 17.53 minutes.

Dolphin Emulation Benchmark

WinRAR 5.0.1: link

Our WinRAR test from 2013 is updated to the latest version of WinRAR at the start of 2014. We compress a set of 2867 files across 320 folders totaling 1.52 GB in size – 95% of these files are small typical website files, and the rest (90% of the size) are small 30 second 720p videos.

WinRAR 5.01, 2867 files, 1.52 GB

3D Particle Movement

3DPM is a self-penned benchmark, taking basic 3D movement algorithms used in Brownian Motion simulations and testing them for speed. High floating point performance, MHz and IPC wins in the single thread version, whereas the multithread version has to handle the threads and loves more cores.

3D Particle Movement: Single Threaded

3D Particle Movement: MultiThreaded

FastStone Image Viewer 4.9

FastStone is the program I use to perform quick or bulk actions on images, such as resizing, adjusting for color and cropping. In our test we take a series of 170 images in various sizes and formats and convert them all into 640x480 .gif files, maintaining the aspect ratio. FastStone does not use multithreading for this test, and results are given in seconds.

FastStone Image Viewer 4.9

Web Benchmarks

On the lower end processors, general usability is a big factor of experience, especially as we move into the HTML5 era of web browsing.  For our web benchmarks, we take four well known tests with Chrome 35 as a consistent browser.

Sunspider 1.0.2

Kraken 1.1

WebXPRT

Google Octane v2

Comparing IPC: Discrete Gaming Generational Tests: Windows Professional Performance
Comments Locked

121 Comments

View All Comments

  • extide - Monday, August 3, 2015 - link

    Actually, no the Author has it correct. The big die the che CPU/GPU, and the small one is the eDRAM.
    On the GT3 dies, Intel folds the graphics back across the CPU's, instead of having it as a very long rectangle.

    See this: http://www.computershopper.com/var/ezwebin_site/st...

    vs This: http://www.overclock.net/content/type/61/id/230657...
  • hansmuff - Monday, August 3, 2015 - link

    Ian, Thank you for this excellent article. I have wished for a 2600k comparison to the more recent CPU iterations and one can piece some of it together here and there but this comprehensive view is outstanding! Still holding out for Skylake, then the 2600k might have to retire.
  • Ewann - Monday, August 3, 2015 - link

    I am really happy to see the i7-2600k comparison here. Like others who've commented, I'm still running that CPU- albeit at stock clock- and it's been totally stable with months on end of uptime (knock on wood). Sure, I've upgraded the GPU once or twice since 2011, but I can't see any reason to build a new system based on these benchmarks. The GPU (GTX 780) is still the limiting factor for gaming, and the 15-20% performance boost overall won't make a significant difference in my day-to-day usage. I now understand why Intel is struggling.
  • Awesomeness - Monday, August 3, 2015 - link

    Same here. I bought a 2600K in the first month it was out. After years of 24/7 operation at 4,9GHz it died. I replaced it with a $100 2500K that's running at 4,6GHz. SB for the win.
  • nathanddrews - Monday, August 3, 2015 - link

    OC benchmarks from each generation? I saw stock benchmarks and 3GHz benchmarks, but not benchmarks for Good or Great OC. I was expecting it based off of the title, but didn't see anything in the article.
  • Staafk - Monday, August 3, 2015 - link

    Missing OC performance comparisons. Or am I blind? The latter is quite possible tbh.
  • Dribble - Monday, August 3, 2015 - link

    Yes, that's what I thought. I want to see what they can all do at a good o/c. I don't run my cpu stock or at 3ghz, I want to see how my o/c sandy bridge would do against an o/c broadwell to see if it's worth an upgrade yet?
  • Impulses - Monday, August 3, 2015 - link

    You can typically extrapolate like 5% per 200MHz, tho it would've been nice to see indeed.
  • joex4444 - Monday, August 3, 2015 - link

    With the whole point of the article being that IPC goes up, this rule is really not suitable. If the IPC goes up by 20%, then if the previous generation followed the 5% per 200MHz rule the new generation follows either 6% per 200MHz or 5% per 167MHz. Though we'd really expect the instructions per second (IPS) to be the important part, and that's not dependent solely upon the size of the overclock, but the ratio of the overclock to stock. Jumping to 4.2GHz from 3.2GHz is a 31% gain, but going to 4.5GHz from 3.5GHz is a 29% gain despite both being a 1.0GHz overclock.

    With the typical IPC gain of 4.4%, we could roughly estimate that a Broadwell at 4.2GHz is like a Haswell at 4.4GHz. With 4.2GHz on Broadwell being a "Good OC" and 4.5GHz on Haswell being a "Good OC" we'd still expect Haswell to be faster once overclocked - but the review should be showing this. However if the particular program is making really good use of the eDRAM, then that 4.2GHz is akin to Haswell at 4.9GHz, which is beyond an excellent OC...
  • SirMaster - Monday, August 3, 2015 - link

    Feelin' pretty good about my 4.6GHz 4770K that I bought more than 2 years ago heh.

Log in

Don't have an account? Sign up now