Introduction and Setup Impressions

Over the last couple of years, mini-PCs in the ultra-compact form factor (UCFF) have emerged as one of the bright spots in the troubled PC market. Intel's NUC systems are one of the most popular in this category. The lack of graphic prowess in the NUCs allowed for machines such as BRIX Pro (based on the Haswell Iris Pro CPU) to enter the market. With Broadwell, Intel is bringing out an Iris NUC on its own.

The 14nm Broadwell CPUs were introduced into the market with the Core M branding for fanless ultraportables. Essentially a rebranding of Y-series CPUs, its power efficiency got everyone excited about what a higher TDP version (U-series) could bring for the PC market. Even as ultrabooks based on Broadwell-U are getting ready for the market, Intel and its partners have started getting the UCFF units into the hands of consumers. Intel's Broadwell NUCs were introduced at CES 2015. We have already reviewed GIGABYTE's Core i7-5550U-based BRIX s and Intel's own Core i5-5250U-based NUC5i5RYK units, giving us some insight into how a 15 W TDP Broadwell-U might perform for common workloads. With Intel's partners launching UCFF PCs based on the U-series CPUs, it was always going to be interesting to see how they could differentiate their Broadwell NUCs. This review of the NUC5i7RYH - Intel's Core i7 Broadwell-U-based NUC with Iris Graphics 6100 - provides some insights.

Traditionally, the NUCs are barebones machines - the end-user could choose an appropriate mSATA SSD (or, for selected models, 2.5" drives), a mini-PCIe WLAN adapter, DDR3L SO-DIMMs and an operating system. Intel has two main changes in the barebones approach for the Broadwell-U NUCs: The WLAN adapter (Intel AC7265) now comes soldered to the motherboard. mSATA SSDs are no longer supported. In its place, we have support for either SATA or PCIe-based M.2 SSDs. Similar to the previous generation NUCs, a free SATA port is available on the board. The Iris NUC is sized to accommodate a 2.5' drive also. The SATA data and power cables are already routed and the appropriate chassis slots are in place to make adding a 2.5" drive very easy (as can be seen in the photograph below).

Intel also supplied us with a sample of Samsung's SM951 M.2 NVMe drive for use as the primary storage medium. The specifications of our Intel NUC5i7RYH review configuration are summarized in the table below.

Intel NUC5i7RYH Specifications
Processor Intel Core i7-5557U
(2C/4T x 3.1 GHz, 14nm, 4MB L2, 28W TDP)
Memory 2x 8GB DDR3L-1866 C13
Graphics Intel Iris Graphics 6100
Disk Drive(s) Samsung SM951 Series MZVPV256 256 GB M.2 NVMe SSD
Networking 1x Intel I218-V GbE, 2x2 Intel AC7265 802.11ac Wi-Fi
Audio Capable of 5.1/7.1 digital output with HD audio bitstreaming (HDMI)
Operating System Retail unit is barebones, but we installed Windows 8.1 Pro x64
Pricing (As configured) $878
Full Specifications Intel NUC5i7RYH Specifications

The Intel NUC5i7RYH kit doesn't come with any pre-installed OS, but our pre-production engineering sample review unit came with a USB key containing the drivers. In addition to the main unit, the other components of the package include a 65 W (19V @ 3.43A) wall-wart (with detachable multi-country power plugs), a VESA mount (along with the necessary screws), setup guides and a QVL (qualified vendors list) for the memory and storage subsystems. The gallery below takes us around the chassis. The Wi-Fi module is underneath the M.2 SSD and not visible in the gallery photo.

The Iris NUC officially supports DDR3L SO-DIMMs at 1600 MHz. However, the BIOS automatically configures the memory for the highest possible speed. Our Crucial DIMM kits support running at up to 1866 MHz and they were automatically configured to run at that frequency with timings of 13-13-13-32 - this is much worse than the usual 1866 MHz kits that we have access to. However, given that memory overclocking is automatically configured, we evaluated the system with those timings.

In the table below, we have an overview of the various systems that we are comparing the Intel NUC5i7RYH against. Note that they may not belong to the same market segment. The relevant configuration details of the machines are provided so that readers have an understanding of why some benchmark numbers are skewed for or against the Intel NUC5i7RYH when we come to those sections.

Comparative PC Configurations
Aspect Intel NUC5i7RYH
CPU Intel Core i7-5557U Intel Core i7-5557U
GPU Intel Iris Graphics 6100 (Broadwell-H GT3) Intel Iris Graphics 6100 (Broadwell-H GT3)
RAM Crucial CT102464BF186D.M16
13-13-13-32 @ 1866 MHz
2x8 GB
Crucial CT102464BF186D.M16
13-13-13-32 @ 1866 MHz
2x8 GB
Storage Samsung SM951 Series MZVPV256
(256 GB; M.2 Type 2280 PCIe 3.0 x4 NVMe; 19nm; MLC)
Samsung SM951 Series MZVPV256
(256 GB; M.2 Type 2280 PCIe 3.0 x4 NVMe; 19nm; MLC)
Wi-Fi Intel Dual Band Wireless-AC 7265
(2x2 802.11ac - 867 Mbps)
Intel Dual Band Wireless-AC 7265
(2x2 802.11ac - 867 Mbps)
Price (in USD, when built) $878 $878
Performance Metrics - I
Comments Locked

66 Comments

View All Comments

  • Pork@III - Monday, April 20, 2015 - link

    No reason for write for discrete desktop graphics in this article.
  • JarredWalton - Monday, April 20, 2015 - link

    So, gaming on the Iris Graphics 6100 -- what gives? 48 EUs at up to 1100MHz should smoke the pants off the HD Graphics 5500 (24 EUs at up to 1000MHz), especially considering the 28W TDP vs. 15W TDP. BioShock Infinite and DiRT Showdown show at least a moderate bump in performance, but unless the chips are fully memory bandwidth bottlenecked I was expecting the Iris 6100 to be about twice as fast as the HD 5500. Disappointing to say the least. What drivers are you running?
  • ganeshts - Monday, April 20, 2015 - link

    Intel actually wrote about this to me right after the Broadwell-U NUC review.. maybe I should have mentioned it in this review.


    The performance scores (especially 3DMark scores) on the Gigabyte BRIX systems included in the review were higher than we expected for those processors. We can confirm that the Gigabyte BRIX systems are configured to run at a TDP of 25W. By comparison the BDW-NUC systems we sent to you are configured to run at a TDP of 20W.

    I’m sure you’re aware that the higher TDP will allow the BRIX to get higher scores on some benchmarks due to the increased thermal headroom. The difference in TDP is likely responsible for some of the unexpected scores, (e.g. the i7-4500U outperforming a i5-5250U on 3dmark ice storm, we would ordinarily expect the i5-5250U to score better in a benchmark like Ice Storm).

    Just wanted to drop you a heads up so you’re aware of the different TDPs on these systems and their impact on the performance benchmarks


    Driver version used for the Iris NUC: 10.18.14.4156
  • OrphanageExplosion - Monday, April 20, 2015 - link

    HD 6100 perf is really poor on my 2015 rMBP 13 under Boot Camp too. Really disappointing.
  • JBVertexx - Monday, April 20, 2015 - link

    Why would you not include gaming performance comparisons vs. AMD Kaveri?
  • silverblue - Tuesday, April 21, 2015 - link

    I think you'd need to find Kaveri within the same (or similar) power space in the same form factor, first. I'd be intrigued, as well.
  • JBVertexx - Tuesday, April 21, 2015 - link

    Run it against an A8-7600 and A10-7800 in 45W mode. I am running an HTPC/Steam Box using an A10-7600 (45W mode) in a Streacom F1C Evo case (http://www.streacom.com/products/f1c-evo-chassis/)... That's close enough to the Nuc form factor, and at least it would see how well AMD graphics hold out against Broadwell Iris Pro.
  • JBVertexx - Tuesday, April 21, 2015 - link

    Correction - running an A8-7600.
  • Galatian - Tuesday, April 21, 2015 - link

    So is the NVMe Version of the SM951 purchasable now? Or is this just one you had laying around?
  • ganeshts - Tuesday, April 21, 2015 - link

    It is coming to the market very soon. Samsung has just now started sampling to the press.

Log in

Don't have an account? Sign up now