WTR3925

There are a few things that are important when talking about a transceiver. To recap, transceivers have a few key elements. On the receive side, we see the need for low noise amplifiers, down-converters, and narrow-band amplifiers. On the transmit side, we need a driver amplifier, up-converter, and another set of narrow-band amplifiers. While most of RF360 is built on relatively old process nodes for CMOS technology, the transceiver can be built on newer CMOS processes because it’s doesn’t have to handle the level of signal that the rest of the front end does.

At a high level, the WTR3925 really brings two new capabilities to the table. First, it does away with the need for a companion transceiver in order to achieve carrier aggregation, which the WTR1625L/WFR1620 combination provided. It seems that this is due to the need for additional ports on the transceiver, which the WTR1625L lacked. The other improvement is that WTR3925 moves to a new 28nm RF process, as opposed to the 65nm RF process used for the WTR1625L.

As a quick aside, RF processes are largely similar to CMOS processes, although with a few modifications. These changes can be thicker metal in interconnects between transistors and memcaps, which are analogous to capacitors in DRAM. Qualcomm claims that this will drive down power consumption, however this is a product of a new architecture that takes advantage of the smaller process node. Unlike digital logic such as what we see on the baseband, RF does not directly benefit from scaling to lower processes. In fact, there is a chance that scaling to lower process nodes can hurt power consumption because even though the transistor can operate faster, there is more noise As a result of this noise, the amplifiers in the transceivers may need more stages and more power in order to achieve the same noise figure.

MDM9x35

While baseband was previously one of the most popular topics in RF, as can be seen by this article RF is much more than just the baseband. However, the baseband is a critical part of the chain. The RF front end is critical for reception and a myriad of other issues, but feature support and control of the front-end lies with the baseband. The baseband must properly interpret the information that the front-end provides and also send out information to the front-end to transmit.

Fortunately, the baseband is implemented with digital logic, so there are significant benefits to moving to the latest and greatest CMOS process node. Lower voltage (and therefore power) is needed to drive the transistors, and it becomes easier to drive higher performance in the DSP. In the case of the MDM9x35, we see that there's a QDSP clocked at 800 MHz for modem functions, and a 1.2 GHz Cortex A7 for functions such as mobile hotspot.

In the case of MDM9x35, there are two major contributors to the reduction in power consumption. The first is the move from 28nm HPm to 20nm SoC. While 20nm SoC doesn’t utilize FinFET, we still see scaling in power, performance, and density. The other area where we see power savings is better implementation of various algorithms. As a result, we should see around 20-25% power savings with the same workload.

MDM9x45

In the time since the first MDM9x35 devices were launched, Qualcomm has also iterated on modems. With the 9x45 generation, we see a move to category 10 LTE, which includes 450 Mbps maximum download speed when aggregating three 20 MHz carriers, and two 20 MHz carriers on the uplink for a maximum of 100 Mbps. Although the Snapdragon 810 doesn't have a 9x45 IP block for the modem, the Snapdragon 810 does support up a maximum of 450 Mbps for download with category 9 LTE. However, there is no uplink carrier aggregation in such a scenario. Uplink carrier aggregation is only possible with category 7, which limits downlink speeds to 300 Mbps.

Qualcomm claims that the MDM9x45 should bring around 40% energy savings in an LTE carrier aggregation scenario when compared to the MDM9x25 modem. In addition, these new modems bring in a new generation of GNSS location, with support for EU's Galileo constellation. It's likely that the DSPs and other aspects of this modem have been beefed up relative to the 9x35 and 8994 modems to enable category 10 data rates.

RF: Antenna Tuner, CMOS PA/Switch Qualcomm's Energy Aware Scheduler
Comments Locked

119 Comments

View All Comments

  • warreo - Wednesday, February 18, 2015 - link

    HAHAHA Tchamber you are a jewel. Thanks for making my morning. Here I was wondering if a week later anybody else had anything intelligent to say....

    Your analogy of the 5433 as a Lamborghini and the Snapdragons as Corvette/Camaro/GT500 is horrible. Period. Anybody who reads this site should know that. If you really want to get into an argument with someone, you should actually know what you're talking about before insulting them.

    As for me, I wasn't talking to down to anyone. I gave AT my observations and also did in fact summarize my own conclusions if you'd bothered to read my comments in totality. Just because I disagree with them doesn't mean I'm talking down to them. You, however, should run along back to pre-school and learn how not to be a prick to others.
  • djvita - Thursday, February 12, 2015 - link

    found some typos

    last paragraph GPU performance "Qualcomm has narrowedmuch"

    CPU performance
    PNG Comp ST 0.82 MP/s 1110 MP/s 1.11 MP/s 35%

    is 1110 correct? found the difference to be very high....

    All in all, preliminar benchamrks looks good. Seems anandtech will need a flex2/mi note pro or the upcoming htc m9 in MWC (for sony no rumors, until july i think, lg g4 maybe in may. S6 wont be qualcomm)
  • Ratman6161 - Thursday, February 12, 2015 - link

    Another typo:

    There are three tables at the top of the CPU Performance page. The last column in the first table says: Snapdragon % Advantage which clearly isn't correct because just in the first line the Samsung has about a 2 to one advantage it says the snapdragon advantage is 608%. I assume you actually meant this column to say but S810 > S805 % Advantage like in the second two tables.
  • djvita - Thursday, February 12, 2015 - link

    they fixed them all now, it was 1.11
  • SydneyBlue120d - Thursday, February 12, 2015 - link

    Very interesting article. Do you think it is possibile the Galaxy S6 devices will use the MDM9x45 modem?
  • deathBOB - Thursday, February 12, 2015 - link

    Subjective impressions? Andrei pointed out that the Exynos was subjectively faster than the 805. How does the 810 fare?
  • MrCommunistGen - Thursday, February 12, 2015 - link

    Thanks for the informative article! The scope of the article as a whole goes far beyond a Preview of Snapdragon 810, specifically the sections on RF and Qualcomm's scheduler.

    That in mind, I'll hold off on passing judgement on S810's performance until we see shipping silicon. Between pre-release drivers and differences in chassis/thermals "Performance Preview" *is* spot on for the whole benchmarks section.

    Even though S810 is Qualcomm's stopgap and there's only so much you can do (for better or worse) to the performance of off the shelf A57/A53 cores, I'm glad they're still in the game - or at least not out of it. Even as a preview, it is clear that Adreno 430's performance is more than just an iterative increase over Adreno 420.

    Regardless of how S810 shakes out, I'm sure Qualcomm is baking all of their learnings from working on this SoC into their in-house ARMv8-A design
  • Mr.r9 - Thursday, February 12, 2015 - link

    Even though this is a preview and drivers/Kernel will definitely improve....I still feel that the 810 will underwhelm.
  • djvita - Thursday, February 12, 2015 - link

    considering I still have an msm8960 device, this will be a huge jump for me.
  • tviceman - Thursday, February 12, 2015 - link

    This performance preview just reaffirms two of my beliefs.

    1) It's a shame that Nvidia couldn't get more products with Tegra K1 in it, seeing how K1 has been on the market for many months and generally outperforms the 805 (sometimes by a wide margin)

    2) It's a shame that Tegra X1 will likely suffer the same limited release fate that Tegra K1 suffered, even if manufacturers were to downclock Tegra X1 to meet smaller TDP demands. X1, even if downclocked, will run circles around 805.

Log in

Don't have an account? Sign up now