Closing Thoughts

Wrapping up our preview of the Broadwell architecture and Intel’s Core M processor, the bulk of Intel’s presentation and focus today is on the latter, so that is where we’ll start.

Core M is not a make-or-break product for Intel, but none the less it is a very important one. Mobile devices – be it tablets, slates, transformers, 2-in-1s etc – are continuing to increase in popularity, and as we’ve seen with ARM based tablets so far they form a market that has continued to grow and continued to erode the x86 laptop market that Intel has dominated for so long. Though laptops as a category are not going anywhere any time soon, their erosion means that Intel needs to get into mobile devices if they want to maintain their sales and their stature. To that end it’s not too late for Intel to break into this market and turn things around, but if they’re going to succeed then they need to make their move sooner or later, and this is where Core M fits in.

It’s telling then that while Intel is going after this market with a Core architecture, they are doing so under a different Core brand. Core M doesn’t just represent a new low powered Core CPU, but in Intel’s eyes is another product entirely. One that is so different that it does away with the Core i3/i5/i7 convention entirely and gets its own brand name and own product numbers. Core M is still Core, but it is nearly unrecognizable compared to the Core of even 4 years ago.

As far as the Core M product is concerned then, while Intel’s plans are grand they are not without merit. Backed by Intel’s new 14nm process and the Broadwell architecture, Core M looks like it should finally resolve the issues that dogged even Haswell-Y by bringing down power consumption even further while improving on Intel’s already strong performance, and getting the resulting processor in an SoC small enough to be usable in even the thinnest mobile devices. In fact from a technical perspective there’s little reason to doubt Core M; we’ll still have to wait to see just how good the resulting retail products are, but there shouldn’t be any technical reason for why it can’t be put into a mobile device comparable to today’s 10”+ tablets. Intel’s own Llama Mountain reference design can vouch for that much, showcasing the viability of Core M in a 12.5” tablet that’s just 7.2mm thick.


Intel's Llama Mountain, a Core M form factor reference design

More likely what will determine Core M’s fate and Intel’s ability to completely break into the mobile device market will be pricing. Intel’s profit margins are somewhat legendary in the computer industry, and a big part of that profitability has come from the high prices Intel has enjoyed from products such as their Core processors. Core M, like the other Cores before it, will still be an upscale product – a higher priced, higher performance alternative to Intel’s mass-market Atom processors. And while that makes plenty of sense on paper, in the real world Intel has to face the AllWinners and other ARM vendors of the world who are happy to sell their ARM SoCs at significantly lower margins, which can have a knock-on effect even if they can’t compete with Intel on overall performance. At this point it’s far too early to call this, especially when Intel isn’t even discussing Core M pricing at this time, but it’s a subject that Intel will have to consider carefully as “good enough” ARM devices will continue to be the biggest threat to Intel’s position in the CPU market.

Moving on, while today’s release from Intel only offers us a preview of what Intel will be delivering with their Broadwell architecture, what Intel has presented thus far looks to continue Intel’s tradition of relentless execution. As a tick Broadwell is a small but respectable improvement in Intel’s Core architecture, with the expected 5% IPC improvement in-line with previous ticks. For more traditional desktops and laptops it won’t radically change the world, but then it never was meant to. The biggest question for these parts will be whether Broadwell will improve on Haswell’s clockspeeds at all – a clockspeed boost made possible by Intel’s 14nm process – or if we’re going to hold steady similar to what we saw with the last tick, Ivy Bridge.

Meanwhile Broadwell’s GPU improvements are more significant, and in the race to further improve what’s essentially the baseline for PC GPU performance it is always welcome. Furthermore the fact that Intel is now at API feature parity with discrete GPUs is a big deal for Intel and it is a big deal for iGPUs as a whole. What we still want to see is more performance; a single slice seems just about right for Core M, but if we’re talking about larger laptop and desktop parts it would be very nice to see something akin to GT3 become baseline, especially with the die size savings Intel will be seeing from the 14nm process.

Finally, from here the rest of Intel’s 2014 should be rather busy. Next month is Intel’s Fall IDF 2014, at which point we expect we’ll be given a deeper look at Broadwell’s architecture. Past that the first Broadwell-Y based Core M processors will be on the shelves for the holidays, and with it our chance to see Broadwell and Intel’s 14nm process in action. However that will also be our only chance to see Broadwell in action this year; while Core M will ship in time for the holidays, the rest of the Broadwell lineup will not appear until 2015.

Putting It All Together: Small Core M
Comments Locked

158 Comments

View All Comments

  • wurizen - Monday, August 11, 2014 - link

    well, an fx-8350 is toe-to-toe with an i7-2600k, which is no slouch until today. and comparing fx-8350 with today's i7-4770k would be a little unfair since the 4770k is 22nm while the 8350 is at 32nm. and we're not even considering software optimizations from OS and/or programs that are probably bent towards intel chips due to its ubiquity.

    so, i think, you're wrong that the fx-8350 doesn't provide good enough. i have both i7-3770k oc'd to 4.1 ghz and an fx-8320 at stock and the amd is fine. it's more than good enough. i've ripped movies using handbrake on both systems and to me, both systems are fast. am i counting milliseconds? no. does it matter to me if the fx-8320 w/ lets say amd r9-290 has 85 fps for so and so game and an i7-4770k w/ the same gpu has a higher fps of 95, let's just say? i don't think so. that extra 10 fps cost that intel dude $100 more. and 10 extra frames with avg frames of 85-95 is undecipherable. it's only when the frames drop down below 60 does one notice it since most monitors are at 60 hz.

    so what makes the fx not good enough for you again? are you like a brag queen? a rich man?
  • frostyfiredude - Monday, August 11, 2014 - link

    Not fair to compare against a 22nm from Intel? Bogus, I can go to the store and buy a 22nm Intel so it should be compared against AMDs greatest. An i5-4670K matches or exceeds the performance of even the FX-9590 in all but the most embarrassingly threaded tasks while costing 50$ more. Cost to operate the machine through the power bill makes up for that price difference at a fairly standard 12c per KWh when used heavily 2 hours per day for 4 years or idling 8 hours per day for the same 4 years.

    Your argument for gaming with the 8350 being good enough is weak too when the 10$ cheaper i3-4430 keeps up. Or spent 125$ less to get a Pentium G3258 AE, then mildly overclock it to again have the same good enough gaming performance if >60FPS is all that matters. The i3 and pentiums are ~70$ cheaper yet when power use is counted again.
  • wurizen - Tuesday, August 12, 2014 - link

    well, if a pentium g3258 is good enuff for gaming, then so is an fx-8350. whaaaaaat? omg we know intel is king. i acknowledge and understand that. intel rules. but, amd is not bad. not bad at all is all im trying to make.

    /omg
  • wetwareinterface - Monday, August 11, 2014 - link

    wow...

    first off you are assuming a lot and not bothering to check any published benchmarks out there so,

    1. 8350 isn't even equal to 2500 i5 let alone 2600 i7.
    2. 32nm vs. 22nm means nothing at all when comparing raw performance in a desktop. it will limit the thermal ceiling so in a laptop the higher nm chip will run hotter therefore be unable to hit higher clocks but in a desktop it means nil.
    3. handbrake ripping relies on speed of dvd/blu-ray drive, handbrake transcoding relies on cpu performance and the 8350 gets spanked there by a dual core i3 not by miliseconds but tens of seconds. i5 it gets to the level of minutes i7 more so.
    4. let's say you're pulling framerates for an r9-290 out of somewhere other than the ether... reality is an i5 is faster than the 8350 in almost any benchmark i've ever seen by roughly 15% overall. in certan games with lots of ai you get crazy framerate advantages with i5 over 8350, things like rome total war and starcraft 2 and diablo 3 etc...

    i'll just say fx8350 isn't good enough for me and i'm certainly not a rich man. system build cost for what i have vs. what the 8350 system would have run was a whopping $65 difference
  • wurizen - Tuesday, August 12, 2014 - link

    #3 is B.S. a dual-core i3 can't rip faster than an fx-8350 in handbrake.

    #4 the r-290 was an example to pair a fairly high end gpu with an fx-8350. a fairly high end gpu helps in games. thus, pairing it with an fx-8350 will give you a good combo that is more than good enough for gaming.

    #2 22nm vs. 32nm does matter in desktops. the fx-8350 is 32nm. if it goes to 22nm, the die shrink would enable the chip to either go higher in clockspeed or lower it's tdp.

    u sound like a benchmark queen or a publicity fatso.
  • wurizen - Tuesday, August 12, 2014 - link

    oh and #1--i am not saying the fx 8350 is better than the i7-2600k. i said "toe-to-toe." the i5-2500k can also beat the fx-835o b/c of intel's IPC speed advantage. but, i think the reasons for that are programs not made to be multithreaded and make use of fx-8350 8-cores to it's potential. since amd trails intel in IPC performance by a lot--this means that a 4-core i5-2500k can match it or sometimes even beat it in games. in a multithreaded environment, the 8-core fx-8350 will always beat the i5-2500k. although it might still trailer the 4-core + 4 fake cores i7-2600k. just kidding. lol.

    i said toe to toe with 2600k which means its "competitive" to an i7-2600k even though the AMD is handicapped with slower IPC speed and most programs/OS not optimize for multithreading. so, to be 10-20% behind in most benchmarks against an i7-2600k is not bad considering how programs take advantage of intel's higher IPC performance.

    do u understand what im trying to say?
  • Andrew Lin - Tuesday, August 26, 2014 - link

    i'm sorry, is your argument here that the FX-8350 is better because it's inferior? because that's all i'm getting out of this. Of course a benchmark is going to take advantage of higher IPC performance. That's the point of a benchmark: to distinguish higher performance. The way you talk about benchmarks it's as if you think benchmarks only give higher numbers because they're biased. That's not how it works. The benchmarks give the i7-2600k higher scores because it is a higher performance part in real life, which is what anyone buying a CPU actually care about. Not to mention the significantly higher efficiency, which is just an added benefit.
    Also, it's really hard to take you seriously when your posts make me think they're written by a teenage girl.
  • wurizen - Tuesday, August 12, 2014 - link

    also, if the fps disparity is so huge btwn fx-8350 and say i5-2500k in games u mention like starcraft 2, then something is wrong with that game. and not the fx-8350. i actually have sc2 and i have access to a pc w/ an fx-8320. so i am going to do a test later tonight. my own pc is an i7-3770k. so i could directly compare 2 different systems. the only thing is that the amd pc has an hd5850 gpu, which should be good enuff for sc2 and my pc has a gtx680 so it's not going to be a direct comparison. but, it should still give a good idea, right?
  • wurizen - Tuesday, August 12, 2014 - link

    i just played starcraft 2 on a pc with fx-8320 (stock clockspeed), 8GB 1600Mhz RAM, 7200rpm HDD and an old AMD HD5850 w/ 1GB VRAM. the experience was smooth. the settings were 1080P, all things at ultra or high and antialiasing set to ON. i wasn't looking at FPS since i don't know how to do it with starcraft 2, but, the gameplay was smooth. it didn't deter my experience.

    i also play this game on my own pc which is an i7-3770k OC'd to 4.1, 16GB 1600 Mhz RAM, 7200rpmHDD and an Nvidia GTX680 FTW w/ 2GB VRAM and i couldn't tell the difference as far as the smoothness of the gameplay is concerned. there is some graphical differences between the AMD GPU and the Nvidia GPU but that is another story. my point is that my experience were seamless playing on an FX chip pc to my own pc with 3700k.

    to make another point, i also have this game on my macbook pro and that is where the experience of playing this game goes down. even in low settings. the MBP just can't handle it. at least the one i have with the older gt330m dGpu and dual-core w/ hyperthreading i7 mobile cpu.

    so.... there.... no numbers or stats. just the experience, to me, which is what counts did not change with the pc that had the amd fx cpu.
  • wurizen - Tuesday, August 12, 2014 - link

    well, i should point out that my macbook pro (mid-2010 model) can handle starcraft 2. but, it's not a "fun" experience. or as smooth.

Log in

Don't have an account? Sign up now