Pricing

Intel's launch lineup with Haswell is pretty spartan, but we do have enough information to get a general idea of what Crystalwell will cost as an addition.

Peak Theoretical GPU Performance
  CPU Cores/Threads CPU Clock (Base/4C/2C/1C Turbo) Graphics GPU Clock (Base/Max Turbo) TDP Price
Intel Core i7-4950HQ 4/8 2.4/3.4/3.5/3.6GHz Intel Iris Pro 5200 200/1300MHz 47W $657
Intel Core i7-4850HQ 4/8 2.3/3.3/3.4/3.5GHz Intel Iris Pro 5200 200/1300MHz 47W $468
Intel Core i7-4800MQ 4/8 2.7/3.5/3.6/3.7GHz Intel HD 4600 400/1300MHz 47W $378

The i7-4950HQ and i7-4850HQ are the only two Iris Pro 5200 parts launching today. A slower 2GHz i7-4750HQ will follow sometime in Q3. CPU clocks are a bit lower when you go to GT3, likely to preserve yield. Compared to the i7-4800MQ the 4850HQ carries a $90 premium. That $90 gives you twice the number of graphics EUs as well as the 128MB of eDRAM. Both adders are likely similar in terms of die area, putting the value of both at $45 a piece. Now you are giving up a bit on the CPU frequency side, so the actual cost could be closer to $50 or so for each. Either way, Iris Pro 5200 doesn't come cheap - especially compared to Intel's HD 4600.

From talking to OEMs, NVIDIA seems to offer better performance at equivalent pricing with their GT 740M/750M solutions, which is why many PC OEMs have decided to go that route for their Haswell launch platforms. What Intel hopes however is that the power savings by going to a single 47W part will win over OEMs in the long run, after all, we are talking about notebooks here.

 

Quick Sync & CPU Performance Final Words
POST A COMMENT

173 Comments

View All Comments

  • kyuu - Saturday, June 01, 2013 - link

    It's probably habit coming from eluding censoring. Reply
  • maba - Saturday, June 01, 2013 - link

    To be fair, there is only one data point (GFXBenchmark 2.7 T-Rex HD - 4X MSAA) where the 47W cTDP configuration is more than 40% slower than the tested GT 650M (rMBP15 90W).
    Actually we have the following [min, max, avg, median] for 47W (55W):
    games: 61%, 106%, 78%, 75% (62%, 112%, 82%, 76%)
    synth.: 55%, 122%, 95%, 94% (59%, 131%, 102%, 100%)
    compute: 85%, 514%, 205%, 153% (86%, 522%, 210%, 159%)
    overall: 55%, 514%, 101%, 85% (59%, 522%, 106%, 92%)
    So typically around 75% for games with a considerably lower TDP - not that bad.
    I do not know whether Intel claimed equal or better performance given a specific TDP or not. With the given 47W (55W) compared to a 650M it would indeed be a false claim.
    But my point is, that with at least ~60% performance and typically ~75% it is admittedly much closer than you stated.
    Reply
  • whyso - Saturday, June 01, 2013 - link

    Note your average 650m is clocked lower than the 650m reviewed here. Reply
  • lmcd - Saturday, June 01, 2013 - link

    If I recall correctly, the rMBP 650m was clocked as high as or slightly higher than the 660m (which was really confusing at the time). Reply
  • JarredWalton - Sunday, June 02, 2013 - link

    Correct. GT 650M by default is usually 835MHz + Boost, with 4GHz RAM. The GTX 660M is 875MHz + Boost with 4GHz RAM. So the rMBP15 is a best-case for GT 650M. However, it's not usually a ton faster than the regular GT 650M -- benchmarks for the UX51VZ are available here:
    http://www.anandtech.com/bench/Product/814
    Reply
  • tipoo - Sunday, June 02, 2013 - link

    I think any extra power just went to the rMBP scaling operations. Reply
  • DickGumshoe - Sunday, June 02, 2013 - link

    Do you know if the scaling algorithms are handled by the CPU or the GPU on the rMBP?

    The big thing I am wondering is that if Apple releases a higher-end model with the MQ CPU's, would the HD 4600 be enough to eliminate the UI lag currently present on the rMBP's HD 4000?

    If it's done on the GPU, then having the HQ CPU's might actually get *better* UI performance than the MQ CPU's for the rMPB.
    Reply
  • lmcd - Sunday, June 02, 2013 - link

    No, because these benchmarks would change the default resolution, which as I understand is something the panel would compensate for?

    Wait, aren't these typically done while the laptop screen is off and an external display is used?
    Reply
  • whyso - Sunday, June 02, 2013 - link

    You got this wrong. 650m is 735/1000 + boost to 850/1000. 660m is 835/1250 boost to 950/1250. Reply
  • jasonelmore - Sunday, June 02, 2013 - link

    worst mistake intel made was that demo with DIRT when it was side by side with a 650m laptop. That set people's expectations. and it falls short in the reviews and people are dogging it. If they would have just kept quite people would be praising them up and down right now. Reply

Log in

Don't have an account? Sign up now