GL/DXBenchmark 2.7 & Final Words

While the 3DMark tests were all run at 720p, the GL/DXBenchmark results run at roughly 2.25x the pixel count: 1080p. We get a mixture of low level and simulated game benchmarks with GL/DXBenchmark 2.7, the former isn't something 3DMark offers across all platforms today. The game simulation tests are far more strenuous here, which should do a better job of putting all of this in perspective. The other benefit we get from moving to Kishonti's test is the ability to compare to iOS and Windows RT as well. There will be a 3DMark release for both of those platforms this quarter, we just don't have final software yet.

We'll start with the low level tests, beginning with Kishonti's fill rate benchmark:

GL/DXBenchmark 2.7 - Fill Test (Offscreen)

Looking at raw pixel pushing power, everything post Apple's A5 seems to have displaced NVIDIA's GeForce 6600. NVIDIA's Tegra 3 doesn't appear to be quite up to snuff with the NV4x class of hardware here, despite similarities in the architectures. Both ARM's Mali-T604 (Nexus 10) and ImgTec's PowerVR SGX 554MP4 (iPad 4) do extremely well here. Both deliver higher fill rate than AMD's Radeon HD 6310, and in the case of the iPad 4 are capable to delivering midrange desktop GPU class performance from 2004 - 2005.

Next we'll look at raw triangle throughput. The vertex shader bound test from 3DMark did some funny stuff to the old G7x based architectures, but GL/DXBenchmark 2.7 seems to be a bit kinder:

GL/DXBenchmark 2.7 - Triangle Throughput, Fragment Lit (Offscreen)

Here the 8500 GT definitely benefits from its unified architecture as it is able to direct all of its compute resources towards the task at hand, giving it better performance than the 7900 GTX. The G7x and NV4x based architectures unfortunately have limited vertex shader hardware, and suffer as a result. That being said, most of the higher end G7x parts are a bit too much for the current crop of ultra mobile GPUs. The midrange NV4x hardware however isn't. The GeForce 6600 manages to deliver triangle throughput just south of the two Tegra 3 based devices (Surface RT, Nexus 7).

Apple's iPad 4 even delivers better performance here than the Radeon HD 6310 (E-350).

ARM's Mali-T604 doesn't do very well in this test, but none of ARM's Mali architectures have been particularly impressive in the triangle throughput tests.

With the low level tests out of the way, it's time to look at the two game scenes. We'll start with the less complex of the two, Egypt HD:

GL/DXBenchmark 2.5 - Egypt HD (Offscreen)

Now we have what we've been looking for. The iPad 4 is able to deliver similar performance to the GeForce 7900 GS, and 7800 GT, which by extension means it should be able to outperform a 6800 Ultra in this test. The vanilla GeForce 6600 remains faster than NVIDIA's Tegra 3, which is a bit disappointing for that part. The good news is Tegra 4 should be somewhere around high-end NV4x/upper-mid-range G7x performance in this sort of workload. Again we're seeing Intel's HD 4000 do remarkably well here. I do have to caution anyone looking to extrapolate game performance from these charts. At best we know how well these GPUs stack up in these benchmarks, until we get true cross-platform games we can't really be sure of anything.

For our last trick, we'll turn to the insanely heavy T-Rex HD benchmark. This test is supposed to tide the mobile market over until the next wave of OpenGL ES 3.0 based GPUs take over, at which point GL/DXBenchmark 3.0 will step in and keep everyone's ego in check.

GL/DXBenchmark 2.7 - T-Rex HD (Offscreen)

T-Rex HD puts the iPad 4 (PowerVR SGX 554MP4) squarely in the class of the 7800 GT and 7900 GS. Note the similarity in performance between the 7800 GT and 7900 GS indicates the relatively independent nature of T-Rex HD when it comes to absurd amounts of memory bandwidth (relatively speaking). Given that all of the ARM platforms south of the iPad 4 line have less than 12.8GB/s of memory bandwidth (and those are the platforms these benchmarks were designed for), a lack of appreciation for the 256-bit memory interfaces on some of the discrete cards is understandable. Here the 7900 GTX shows a 50% increase in performance over the 7900 GS. Given the 62.5% advantage the GTX holds in raw pixel shader performance, the advantage makes sense.

The 8500 GT's leading performance here is likely due to a combination of factors. Newer drivers, a unified shader architecture that lines up better with what the benchmark is optimized to run on, etc... It's still remarkable how well the iPad 4's A6X SoC does here as well as Qualcomm's Snapdragon 600/Adreno 320. The latter is even more impressive given that it's constrained to the power envelope of a large smartphone and not a tablet. The fact that we're this close with such portable hardware is seriously amazing.

At the end of the day I'd say it's safe to assume the current crop of high-end ultra mobile devices can deliver GPU performance similar to that of mid to high-end GPUs from 2006. The caveat there is that we have to be talking about performance in workloads that don't have the same memory bandwidth demands as the games from that same era. While compute power has definitely kept up (as has memory capacity), memory bandwidth is no where near as good as it was on even low end to mainstream cards from that time period. For these ultra mobile devices to really shine as gaming devices, it will take a combination of further increasing compute as well as significantly enhancing memory bandwidth. Apple (and now companies like Samsung as well) has been steadily increasing memory bandwidth on its mobile SoCs for the past few generations, but it will need to do more. I suspect the mobile SoC vendors will take a page from the console folks and/or Intel and begin looking at embedded/stacked DRAM options over the coming years to address this problem.

 

Choosing a Testbed CPU & 3DMark Performance
Comments Locked

128 Comments

View All Comments

  • fabarati - Thursday, April 4, 2013 - link

    Good point. Haven't used a 7 Series geforce since 2008, so I'm not up to date on their performance. I just meant that the benchmarks don't tell the whole stories.

    If you use the DX9 path available in many games, would the 8500 GT still be faster? I mean, DX9 is probably the only way to get decent performance out of the both these cards (that was always true of the 8500 GT).
  • perry1mm - Thursday, April 4, 2013 - link

    It would be interesting to see another Win 8 tablet with higher frequencies for the iGPU from an i7 and more RAM (or with higher bandwidth if it's possible). Maybe just turn off the dedicated GPU of the Edge Pro to see the difference?

    From the videos I've checked out the Surface Pro vs games I play on my Vaio Duo 11, I get about 25% better performance with the i7 3537u @ 3.1Ghz. So if the Surface Pro gets 30FPS at native res, I'll likely get between 35 and 40. But I'd still be interested in an actual comparison test, and searching there seems to be none for GPU/gaming performance of Win 8 tablets, other than the Surface and Edge...which are on extreme ends of the spectrum.
  • milli - Thursday, April 4, 2013 - link

    So a GPU with 16 Kepler cores would be enough to be faster than every SOC available. The lowest end Kepler GPU (GT640) has 384 of them. Just to put things into pespective.
    Also the A15 is beaten by AMD's Bobcat core ...
  • marc1000 - Thursday, April 4, 2013 - link

    this is a thing I would like to see, even if only for academic reasons. what happens if we put a small quantity of current-gen GPU cores on a really small chip? I guess the biggest problem would be to scale down the fixed hardware that feeds the cores...
  • DanNeely - Thursday, April 4, 2013 - link

    Our first look at something like this is probably going to be the Atom2 later this year with 4(?) Intel HD GPU (IVB generation??) cores.
  • jeffkibuule - Thursday, April 4, 2013 - link

    Tegra 5 I believe will use Kepler cores.
  • Spunjji - Friday, April 5, 2013 - link

    That and tweaking them for the lower thermal envelope. The way they've been optimised for desktop/notebook voltages and thermal envelopes probably means they'd need significant alterations to be suitable for a mobile scenario.
  • tipoo - Thursday, April 4, 2013 - link

    I've been underestimating these tablet GPUs, I figured they'd be up around Geforce FX series performance by the games that run on them, but the iPad 4 is nearing the 7800 which is pretty impressive.

    This is also interesting because the xbox 360 is only up around Geforce 7800 level too, but that also has more memory bandwidth and the eDRAM and closer to metal programming to work with than the smartphone SoCs. Within the next generation of SoCs though, I think the PS360 GPUs will be thoroughly beaten, which is pretty amazing to think about considering these are single digit watt chips. Especially with the SGX Rogue/600 series.

    Games are a different matter though, the best tablet games still don't have a great deal of depth.
  • dj christian - Thursday, April 4, 2013 - link

    Metal programming?
  • tipoo - Thursday, April 4, 2013 - link

    Close to the metal meaning less overhead to go through than PC game programming.

Log in

Don't have an account? Sign up now