I remember buying my first memory kit ever.  It was a 4GB kit of OCZ DDR2 for my brand new E6400 system, and at the time I paid ~$240, sometime back in 2005.  Skip forward seven years and users can enjoy four times as much density for under 1/3 of the price, an upswing by a factor 12x in terms of density against price.  However in terms of the memory landscape, performance is a key factor when deciding between kits that cost almost the same, and making sure if that extra $15 for the next memory kit up is worth the jump.

The pricing for each of the kits are as follows:

$75: Ares DDR3-1333 9-9-9 4x4 GB
$80: RipjawsX DDR3-1600 9-9-9 4x4 GB
$95: Sniper DDR3-1866 9-10-9 4x4 GB
$130: RipjawsZ DDR3-2133 9-11-10 4x4 GB
$145: TridentX DDR3-2400 10-12-12 4x4 GB

Ultimately the best way to look at these results is through the IGP comparison graph posted several pages back:

Our synthetic test shows that as memory kits get faster, sub-timings can start to suffer (as in the kits we have tested), and as a result despite the extra MHz we can hit the law of limiting returns.  If we tested a 2400 9-9-9 kit, I’m sure the synthetic test would rise proportionately as the jump from 1333 9-9-9 to 1600 9-9-9 and 1866 9-10-9 did.  But it is the other results showing the kit comparison that makes interesting reading.

Ultimately whether a kit will be beneficial or not is down to the scenario in which it is used.  All the tests today rely on having one part of the system at full stretch for a certain amount of time – either the CPU or the GPU.  In most circumstances a system is not taxed, such as checking email or browsing the web, and thus memory may not make much of a difference (and it is hard to quantify in any scientific way).  However, for situations where something is taxed, we can compare results.

As we see with our IGP testing, some games get boosted significantly with memory (Batman:AA), whereas some level out and get sub-10% boosts despite almost double the cost for that memory (Portal 2).  In a similar fashion, our x264 decoding tests show that a small gain can be had, or in WinRAR up to 20% better performance is possible.

Writing this review has taken a lot longer than expected.  Initially it comes down to what benchmarks should be run – there are a lot of synthetic results out in the wild from many sources, and I wanted to focus on real-world scenarios to aid buying decisions.  Hopefully I have found a good number of different scenarios where buying that higher rated memory kit actually makes a difference – IGP gaming is the key one often quoted, but other options such as Maya, WinRAR compression and USB 3.0 throughput can be important too.   

In the end, we have to recommend what kits our users should be looking for.  Taking the DDR3-1333 C9 kit as a base, it seems a no-brainer to go for the DDR3-1600 C9 kit for $5 more.  The boost across the board for a negligible difference in price is worth it.  The jump up to the G.Skill 1866 C9 kit also provides enough of a measurable boost, although the leap in price from 1600 C9 is another $15, which could be harder to swallow.

As we move into the 2133 C9 kit we tested today, we again across our test bed see a tangible jump in performance.  This jump is not as much as moving from 1333 to 1600, but it is there and users wanting peak performance will be happy with this kit, though the size of the user pockets will also have to match. 

When it comes to our 2400 C10 kit results, compared to the 2133 C9, it is highly dependant which kit comes out on top.  Even if one kit beats the other, it is only by a small margin – not one that can be justified by a $15 jump in the price.

For the majority of users, the DDR3-1866 C9 kit from G.Skill is a great buy, as long as the user remembers to enable XMP(!).  Budget conscious builds will find solace in the DDR3-1600 C9 kit, which is a no brainer over the 1333 C9 kit for the extra $5.  If your pockets are a little deeper, then the G.Skill DDR3-2133 C9 kit will offer some extra performance, but not as much as jumping between the other kits will.  The DDR3-2400 C10 kit is not in the right ballpark compared to the other kits and only serves well for forum signatures.  To sum up:

$75: Ares DDR3-1333 9-9-9 4x4 GB
$80: RipjawsX DDR3-1600 9-9-9 4x4 GB – Recommended for Budget Conscious
$95: Sniper DDR3-1866 9-10-9 4x4 GB – Recommended
$130: RipjawsZ DDR3-2133 9-11-10 4x4 GB – Recommended for Deeper Pockets
$145: TridentX DDR3-2400 10-12-12 4x4 GB – Not Recommended

Overclocking Results
Comments Locked

114 Comments

View All Comments

  • Calin - Friday, October 19, 2012 - link

    I remember the times when I had to select the speed of the processor (and even that of the processor's bus) with jumpers or DIP switches... It wasn't even so long ago, I'm sure anandtech.com has articles with mainboards with DIP switches or jumpers (jumpers were soooo Pentium :p but DIP switches were used in some K6 mainboards IIRC )
  • Ecliptic - Friday, October 19, 2012 - link

    Great article comparing different speed ram at similar timings but I'd be interested in seeing results at different timings. For example, I have some ddr3-1866 ram with these XMP timings:
    1333 @ 6-6-6-18
    1600 @ 8-8-8-24
    1866 @ 9-9-9-27
    The question I have is if it better to run it at the full speed or lower the slower speed and use tighter timings?
  • APassingMe - Friday, October 19, 2012 - link

    + 1

    + 2, if I can get away with it. I've always wondered the same thing. I have seen some minor formulas designed to compare... something like frequency divided by timing, in order to get a comparable number. But that is pure theory for the most part, I would like to see how the differences in the real world effects different systems and loads.
  • Spunjji - Friday, October 19, 2012 - link

    But in all seriousness, I would find that to be much more useful - it's more likely to actually be used for IGP gaming.

    If you could go as far as to show the possible practical benefits of the higher-speed RAM (e.g. new settings /resolutions that become playable) that would be spiffing.
  • vegemeister - Friday, October 19, 2012 - link

    Stop using 2 pass for benchmarks. Nobody is trying to fit DVD rips onto CD-Rs anymore. Exact file size *does not matter*. Using the same CRF for every file in a set (say, a season of a television series) produces a much better result and takes less time (you pretty much avoid the first pass).
  • IanCutress - Friday, October 19, 2012 - link

    The 2-pass is a feature of Greysky's x264 benchmark. Please feel free to email him if you would like him to stop doing 2-pass. Or, just look at the 1st pass results if the 2nd pass bothers you.

    Ian
  • rigel84 - Friday, October 19, 2012 - link

    Hi, I don't know if I somehow skipped it in the article, but if I buy a 3570k and some 1866mhz memory, wouldn't I have to overclock the CPU in order for them to run at that speed? I'm pretty sure I had to overclock my RAM on my P4 2,4ghz, in order to use the extra mhz.. Does my memory fail me or has things changed?
  • IanCutress - Friday, October 19, 2012 - link

    No, you do not have to overclock the CPU. This has not been the case since the early days :D. Modern computer systems in the BIOS have an option to adjust the memory strap (1333/1600/1866 et al.) as required. On Intel systems and these memory kits, all that is needed it to set XMP - you need not worry about voltages or sub-timings unless you are overclocking the memory.

    Ian
  • CaedenV - Friday, October 19, 2012 - link

    as there is an obvious difference with ram speed for onboard graphics, the next obvious question is one of how much memory is needed to prevent the system from throwing things back on the HDD?

    The reason I ask is that 16GB, while relatively cheap today, is still a TON of ram by today's standards, and people who are on a budget where they are playing with igp are not going to be able to afford an i7, and much less be willing to fork over ~$100 for system memory. However, if there is no performance hit moving down to 8GB of system memory it becomes much more affordable for these users to purchase better performing ram because the price points are even closer together between the performance tiers. As I understand memory usage, there should be no performance hit so long as there is more memory available than is actively being used by the game, so the question is how much is really needed before hitting that need for more memory? is the old standard of 4GB enough still? or do people need to step up to 8GB? or, if nothing is getting passed onto a dedicated GPU, do igp users really need that glut of 16GB of ram?

    Lastly, I remember my first personal build being a Pentium 3 1GHz machine for a real time editing machine for college. I remember it being such an issue because the Pentium 4 was out, but was tied to Rambus memory which had a high burst rate, but terrible sustained performance, and so I agonized for a few months about sticking with the older but cheaper platform that had consistent performance, vs moving up to the newer (and terribly more expensive) P4 setup which would perform great for most tasks, but not as well for rendering projects. Anywho, I ended up getting the P3 with 1GB of DDR 133 memory. I cannot remember the actual price off hand (2001), but I do remember that the system memory was the 2nd most expensive part of the system (2nd to the real time rendering card which was $800). It really is mindblowing how much better things have gotten, and how much cheaper things are, and one wonders how long prices can remain this low with sales volumes dropping before companies start dropping out and we have 2-3 companies that all decide to up prices in lock step.
  • IanCutress - Friday, October 19, 2012 - link

    With memory being relatively cheap, on a standard DDR3 system running Windows 7, 8 GB would be the minimum recommendation at this level. As I mentioned in my review, in my work load the most I have ever peaked at was 7.7 GB, and that was while playing a 1080p game with all the extras alongside lots of Chrome tabs and documents open at the same time.

    Ideally this review and comparison should be taken from the perspective that you should know how much memory you are using. For 99.9% of the populace, that usually means 16GB or less. Most can get away with 8, and on a modern Windows OS I wouldn't suggest anything less than that. 4GB might be ok, but that's what I have in my netbook and I sometimes hit that.

    Ian

Log in

Don't have an account? Sign up now