Portal 2

A stalwart of the Source engine, Portal 2 is the big hit of 2011 following on from the original award-winning Portal.  In our testing suite, Portal 2 performance should be indicative of CS:GO performance to a certain extent.  Here we test Portal 2 at 1920x1080 with High/Very High graphical settings.

Portal 2 IGP, 1920x1080, Very High, 8xMSAA

Portal 2 mirrors previous testing, albeit our frame rate increases as a percentage are not that great – 1333 to 1600 is a 4.3% increase, but 1333 to 2400 is only an 8.8% increase.

Batman Arkham Asylum

Made in 2009, Batman:AA uses the Unreal Engine 3 to create what was called “the Most Critically Acclaimed Superhero Game Ever”, awarded in the Guinness World Record books with an average score of 91.67 from reviewers.  The game boasts several awards including a BAFTA.  Here we use the in-game benchmark while at the lowest specification settings without PhysX at 1920x1080.  Results are reported to the nearest FPS, and as such we take 4 runs and take the average value of the final three, as the first result is sometimes +33% more than normal.

Batman: AA IGP, 1920x1080, Ultra Low

Batman: AA represents some of the best increases of any application in our testing.  Jumps from 1333 C9 to 1600 C9 and 1866 C9 gives an 8% then another 7% boost, ending with a 21% increase in frame rates moving from 1333 C9 to 2400 C10.

Overall IGP Results

Taking all our IGP results gives us the following graph:

The only game that beats the MemTweakIt predictions is Batman: AA, but most games follow the similar shape of increases just scaled differently.  Bearing in mind the price differences between the kits, if IGP is your goal then either the 1600 C9 or 1866 C9 seem best in terms of bang-for-buck, but 2133 C9 will provide extra performance if the budget stretches that far.

Gaming Tests: Metro 2033, Civilization V, Dirt 3 Input/Output Testing
POST A COMMENT

112 Comments

View All Comments

  • jwilliams4200 - Friday, October 19, 2012 - link

    You are also incorrect, as well as highly misleading to anyone who cares about practical matters regarding DRAM latencies.

    Reasonable people are interested in, for example, the fact that reading all the bytes on a DRAM page takes significantly less time than reading the same number of bytes from random locations distributed throughout the DRAM module.

    Reasonable people can easily understand someone calling that difference sequential and random read speeds.

    Your argument is equivalent to saying that no, you did not shoot the guy, the gun shot him, and you are innocent. No reasonable person cares about such specious reasoning.
    Reply
  • hsir - Friday, October 26, 2012 - link

    jwilliams4200 is absolutely right.

    People who care about practical memory performance worry about the inherent non-uniformity in DRAM access latencies and the factors that prevent efficient DRAM bandwidth utilization. In other words, just row-cycle time (tRC) and the pin bandwidth numbers are not even remotely sufficient to speculate how your DRAM system will perform.

    DRAM access latencies are also significantly impacted by the memory controller's scheduling policy - i.e. how it prioritizes one DRAM request over another. Row-hit maximization policies, write-draining parameters and access type (if this is a cpu/gpu/dma request) will all affect latencies and DRAM bandwidth utilization. So just sweeping everything under the carpet by saying that every access to DRAM takes the same amount of time is, well, just not right.
    Reply
  • nafhan - Friday, October 19, 2012 - link

    I was specifically responding to your incorrect definition of "random access". Randomness doesn't guarantee timing; it just means you can get to it out of order. Reply
  • jwilliams4200 - Friday, October 19, 2012 - link

    And yet, by any practical definition, you are incorrect and the author is correct.

    For example, if you read (from RAM) 1GiB of data in sequential order of memory addresses, it will be significantly faster than if you read 1GiB of data, one byte at a time, from randomly selected memory addresses. The latter will usually take two to four times as long (or worse).

    It is not unreasonable to refer to that as the difference between sequential and random reads.

    Your argument reminds me of the little boy who, chastised by his mother for pulling the cat's tail, whined, "I didn't pull the cat's tail, I just held it and the cat pulled."
    Reply
  • jwilliams4200 - Thursday, October 18, 2012 - link

    Depending on whether there is a page-hit (row needed already open), page-empty (row needed not yet open), or page-miss (row needed is not the row already open), the time to read a word can vary by a factor of 3 times (i.e., 1x latency for a page-hit, 2x latency for a page-empty, and 3x latency for a page-miss).

    What the author refers to as a "sequential read" probably probably refers to reading from an already open page (page-hit).

    While his terminology may be ambiguous (and his computation for the "sequential read" is incorrect, it should be 4 clocks), he is nevertheless talking about a meaningful concept related to variation on latency in DRAM for different types of reads.

    See here for more detail:

    http://www.anandtech.com/show/3851/everything-you-...
    Reply
  • Shadow_k - Thursday, October 18, 2012 - link

    My knowledge of RAM has increased 10 fold very nice artical well done Reply
  • losttsol - Thursday, October 18, 2012 - link

    2133MHz "Recommended for Deeper Pockets"???

    Not really. DDR3 is so cheap now that high end RAM is affordable for all. I would have said you were crazy a few years ago if you told me soon I could buy 16GB of RAM for less than $150.
    Reply
  • IanCutress - Thursday, October 18, 2012 - link

    Either pay $95 for 1866 C9 or $130 for 2133 C9 - minor differences, but $35 saving. This is strictly talking about the kits used today, there could be other price differences. But I stand by my recommendation - for the vast majority of cases 1866 C9 will be fine, and there is a minor performance gain in some scenarios with 2133 C9, but at a $35 difference it is hard to justify unless you have some spare budget. Most likely that budget could be put into a bigger SSD or GPU.

    Ian
    Reply
  • just4U - Friday, October 19, 2012 - link

    Something has to be said about the TridentX brand I believe.. since it is getting some pretty killer feedback. It's simply the best ram out there being able to do all that any other ram can and that little bit extra. I don't see the speed increase as a selling point but the lower timings at conventional speeds that users are reporting is interesting.. I haven't tried it though.. just going on what I've read. Shame about the size of the heatsinks though.. makes it problematic in some builds. Reply
  • Peanutsrevenge - Friday, October 19, 2012 - link

    You clearly live in some protected bubble where everyone has well paid jobs and isn't on a shoestring budget.

    I would so LMAO when you get mugged by someone struggling to feed themselves because you're all flash with your cash.
    Reply

Log in

Don't have an account? Sign up now