Final Words

 

Update: Micron tells us that the P320h doesn't support NVMe, we are digging to understand how Micron's controller differs from the NVMe IDT controller with a similar part number.

For Micron's first PCIe SSD, the P320h performs very well. Random read and write performance are untouched by any non-SandForce architecture we've tested here. Average service times in our application based workload traces are also class leading, presumably as a result of the IDT controller and lightweight PCIe controller. Sequential performance is also very good and potentially even better under heavier workloads. The fact that there's no claimed performance difference between the 350GB and 700GB drives is good for users who don't have giant workload footprints. Overall it's an impressive step forward. The native PCIe architecture makes a lot of sense and will hopefully quickly supplant the current crop of SATA-RAID-on-a-PCIe-card solutions on the market today. Where things will get really interesting is when we start coupling multiple PCIe SSDs in a system.

The downsides to the P320h are obvious. By using 34nm SLC NAND Micron ensures wonderful endurance, but prices the solution out of the reach of many customers whose needs don't require such high endurance. Until Micron brings eMLC/MLC-HET NAND to the P320h, I suspect the more conventional PCIe SSDs (e.g. Intel's SSD 910) will remain better values. For the subset of users who require SLC endurance however, the P320h should definitely fit the bill.

The second downside is just as fundamental: the driver stack is still in its infancy. Although the ultimate goal is SATA-like compatibility with all systems, it will take some time to get there. Until that day comes, if you're considering the P320h you'll want to make sure that Micron has validated the drive on your platform.

PCIe is the future. I don't expect a smooth ride to get us there, but it's where solid state storage is headed - particularly in the enterprise market. The P320h is a good starting point, I'm eager to see where Micron takes it.

Enterprise Storage Bench - Microsoft SQL WeeklyMaintenance
Comments Locked

57 Comments

View All Comments

  • PCTC2 - Monday, October 15, 2012 - link

    I think some of you guys are missing the point. This is an enterprise drive. You are not going to be booting off of it. You are not going to find it cheap or in smaller sizes. This drive, if it was a car, would be the unholy child of a European supercar and a Marauder. I could put one of these in a compute cluster and slam it 24/7 and it would be happy. And I would be happy because it means that I don't have to worry about hitting NAND endurance limits and I have a low-latency, highly parallelized storage device.

    So no. I (and probably anyone else who deals with enterprise hardware) don't care that it isn't bootable. I don't want it bootable. I don't care that it probably costs $5000+ for 700GB. It's cheaper in the long run. If it was to be anywhere close $300, you would have probably have 128GB of raw eMLC NAND, before over provisioning/RAIN/etc. Who in the industry would want such a small PCIe SSD when its strength is the large number of channels and large capacity.

    But would I give my right testicle to be able to eval one of these units, possibly buying enough for all of the servers? Yes. I probably would.
  • DukeN - Tuesday, October 16, 2012 - link

    So you'd buy this for all your servers without figuring out how to add disk redundancy for these things?

    Or if you could RAID them, how that would affect the lifetime and TRIM-related performance.
  • DataC - Tuesday, October 16, 2012 - link

    Dear PCTC2, I’m with Micron and our engineering team loves your Marauder/Supercar analogy. If you’re serious about that eval unit, we should chat. You can reach me at SSD@micron.com.

    And I promise our eval terms don’t require quite as much commitment as you’ve suggested....
  • DukeN - Monday, October 15, 2012 - link

    Sorry, but no enterprise is putting their Oracle or MSSQL clusters on a platform based just on individual disk benchmarks.

    Numbers compared to disk arrays, SAN devices, etc would be welcome. Also, no enterprise will run something like this without redundancy which brings up another slew of questions - TRIM, wear-levelling, etc.

    Thanks
  • SQLServerIO - Monday, October 15, 2012 - link

    There are only two cards that I'm aware of that are similar. Fusion-io with their line of cards and Texas Memory Systems which was acquired by IBM recently.

    The big difference between this card and the Fusion-io card is where it stores its LBA's and block mappings. The TMS drive and this drive both store that on the drive either in DRAM or flash on PCB. The fusion-io cards use your system memory.

    On the latency side, fusion-io has very solid latency numbers even on their MLC products. This card between the native PCI-e interface and using SLC make it very competitive.

    I am worried about the driver issues, this is a HUGE problem for those of us running on windows. TMS and fusion-io both have had driver problems but with products that have been on the market for several years now have ironed them out. Micron being very late to the game can't afford to have these issues at launch even though they are disclosing them it will cut them off from a lot of the smaller shops that would buy from them.
    I would like to know how many channels are active out of the 32 available at a time. If they come back and say all 32 that is also concerning pointing to bottlenecks in their custom ASIC with this much SLC flash on board.

    Just my thoughts.
    Wes - www.sqlserverio.com
  • FunBunny2 - Monday, October 15, 2012 - link

    And no encryption? In an Enterprise drive? Also, the R/W performance difference is puzzling.
  • jospoortvliet - Tuesday, October 16, 2012 - link

    You should run a load which requires hardware like this on an enterprise OS, not a playtoy as Windows... I think the comment about 32 vs 512 QD made that clear already. MS is nice for SMB with unskilled workers due to familiarity. But prise-performance it's crappy (requires lots of maintenance) and

    Your choices would be:
    https://www.suse.com/products/server/
    http://www.redhat.com/products/enterprise-linux/

    That's what you use at, for example, at the London Stock Exchange. Just google "london stock exchange linux dotnet" and see how MS failed at a real demanding workload and the Stock Exchange lost billions on a bad bet.

    But I guess you'll have to ignore all that as you're not trained for anything else :D
  • jospoortvliet - Tuesday, October 16, 2012 - link

    (missing part would of course be "... and it fails completely at more demanding workloads")
  • DataC - Tuesday, October 16, 2012 - link

    I’d like to respond to the drivers concern. I work for Micron in our SSD organization and can certify that we have fully tested our drive in two server-class Windows-based operating systems (in addition to Linux). These are Windows Server 2008 and 2012. This is an Enterprise-class drive and as such we currently do not support desktop operating systems such as Windows 7. Some of the chipset compatibility issues like the H67 fall also into the category of desktop systems and as such we do not explicitly support them. Understandably, while this makes reviewing the card somewhat difficult (most reviewers don’t want to spend $10K+ on a server) we need to be clear that this is not a driver maturity issue but a conscious decision we made to support datacenter, server-grade hardware and OSs.
  • boogerlad - Monday, October 15, 2012 - link

    Ah, just the review I was waiting for. This drive isn't usable as an os boot drive? How unfortunate...

Log in

Don't have an account? Sign up now