Apple's Swift: Pipeline Depth & Memory Latency

Section by Anand Shimpi

For the first time since the iPhone's introduction in 2007, Apple is shipping a smartphone with a CPU clock frequency greater than 1GHz. The Cortex A8 in the iPhone 3GS hit 600MHz, while the iPhone 4 took it to 800MHz. With the iPhone 4S, Apple chose to maintain the same 800MHz operating frequency as it moved to dual-Cortex A9s. Staying true to its namesake, Swift runs at a maximum frequency of 1.3GHz as implemented in the iPhone 5's A6 SoC. Note that it's quite likely the 4th generation iPad will implement an even higher clocked version (1.5GHz being an obvious target).

Clock speed alone doesn't tell us everything we need to know about performance. Deeper pipelines can easily boost clock speed but come with steep penalties for mispredicted branches. ARM's Cortex A8 featured a 13 stage pipeline, while the Cortex A9 moved down to only 8 stages while maintining similar clock speeds. Reducing pipeline depth without sacrificing clock speed contributed greatly to the Cortex A9's tangible increase in performance. The Cortex A15 moves to a fairly deep 15 stage pipeline, while Krait is a bit more conservative at 11 stages. Intel's Atom has the deepest pipeline (ironically enough) at 16 stages.

To find out where Swift falls in all of this I wrote two different codepaths. The first featured an easily predictable branch that should almost always be taken. The second codepath featured a fairly unpredictable branch. Branch predictors work by looking at branch history - branches with predictable history should be, well, easy to predict while the opposite is true for branches with a more varied past. This time I measured latency in clocks for the main code loop:

Branch Prediction Code
  Apple A3 (Cortex A8 @ 600MHz Apple A5 (2 x Cortex A9 @ 800MHz Apple A6 (2 x Swift @ 1300MHz
Easy Branch 14 clocks 9 clocks 12 clocks
Hard Branch 70 clocks 48 clocks 73 clocks

The hard branch involves more compares and some division (I'm basically branching on odd vs. even values of an incremented variable) so the loop takes much longer to execute, but note the dramatic increase in cycle count between the Cortex A9 and Swift/Cortex A8. If I'm understanding this data correctly it looks like the mispredict penalty for Swift is around 50% longer than for ARM's Cortex A9, and very close to the Cortex A8. Based on this data I would peg Swift's pipeline depth at around 12 stages, very similar to Qualcomm's Krait and just shy of ARM's Cortex A8.

Note that despite the significant increase in pipeline depth Apple appears to have been able to keep IPC, at worst, constant (remember back to our scaled Geekbench scores - Swift never lost to a 1.3GHz Cortex A9). The obvious explanation there is a significant improvement in branch prediction accuracy, which any good chip designer would focus on when increasing pipeline depth like this. Very good work on Apple's part.

The remaining aspect of Swift that we have yet to quantify is memory latency. From our iPhone 5 performance preview we already know there's a tremendous increase in memory bandwidth to the CPU cores, but as the external memory interface remains at 64-bits wide all of the changes must be internal to the cache and memory controllers. I went back to Nirdhar's iOS test vehicle and wrote some new code, this time to access a large data array whose size I could vary. I created an array of a finite size and added numbers stored in the array. I increased the array size and measured the relationship between array size and code latency. With enough data points I should get a good idea of cache and memory latency for Swift compared to Apple's implementation of the Cortex A8 and A9.

At relatively small data structure sizes Swift appears to be a bit quicker than the Cortex A8/A9, but there's near convergence around 4 - 16KB. Take a look at what happens once we grow beyond the 32KB L1 data cache of these chips. Swift manages around half the latency for running this code as the Cortex A9 (the Cortex A8 has a 256KB L2 cache so its latency shoots up much sooner). Even at very large array sizes Swift's latency is improved substantially. Note that this data is substantiated by all of the other iOS memory benchmarks we've seen. A quick look at Geekbench's memory and stream tests show huge improvements in bandwidth utilization:

Couple the dedicated load/store port with a much lower latency memory subsystem and you get 2.5 - 3.2x the memory performance of the iPhone 4S. It's the changes to the memory subsystem that really enable Swift's performance.

 

Apple's Swift: Visualized Six Generations of iPhones: Performance Compared
Comments Locked

276 Comments

View All Comments

  • ArmedandDangerous - Tuesday, October 16, 2012 - link

    What ever happened to the One X International review that was promised when you were reviewing the US version? Lots of promised articles and reviews that were never ever done...
  • MrCake - Wednesday, October 17, 2012 - link

    Yeah, already posted this comment for podcast 8, but it bears repeating. I'm less angry now, but still facepalming.

    It's not my expertise but I have designed a few hundred aluminum parts, so here's how it probably
    works. The call-out is most likely equivalent to mil-std-171 7.2.2; this is a ~.0005" thickness coat,
    decorative and scratch resistant. The coating itself is super hard, and can only be scratched by harder materials. The problem is the base metal yield strength is still fairly low. Chamfers (yes, we do pronounce the "h") have sharp edges, which make point contacts and therefore have theoretically infinite contact stresses till they're rounded off. To summarize; small contact areas, equal high pressures even at low forces; pressures over material yield cause deformations, and deformations over .0005" make you see silver. The chamfer finish is probably not a post anodization process,it's diamond ground and has a much finer surface finish. The rest of the phone is cnc milled, and is matte from either a sandblasting, or vibratory media process to remove machining marks. Anodize surfaces are as glossy/matte as their surface finish. And as to the "structural integrity" concern repeated, and repeated, and repeated; The iphone is thin, but the anodize coating is a couple orders of magnitude thinner and has negligible affect on structural integrity.

    A possible fix would be mil-std-171 7.5.2 Anodize Type III which is an anodized hardcoat. It's a
    similar process but coats to .002" thick, packs it's molecules much denser, and can pass a hardness test to rockwell C60. It's a reasonable response to the scratching issue, however it may not be appropriate for other reasons(prone to cracking instead of scratching, tolerance issues, more costly, less pretty.)
  • syxbit - Wednesday, October 17, 2012 - link

    Great job guys. I'd appreciate it if you went into as much detail on the upcoming Nexus device(s).
  • KPOM - Wednesday, October 17, 2012 - link

    They will.
  • WooDaddy - Wednesday, October 17, 2012 - link

    I didn't RTFA (as if I need to question Anand consistently excellent analysis as it has been Anandtech's inception), but as soon as I saw the phrase 'murdered out' regarding the black/slate color, I was done. It was like Anand was at a poetry slam and he dropped the mic signifying that there is no one better.
  • VivekGowri - Wednesday, October 17, 2012 - link

    Hey, hey, I wrote that part :P
  • juhatus - Wednesday, October 17, 2012 - link

    iPhone review.. what about..

    Does it work as a phone??
  • SJD - Wednesday, October 17, 2012 - link

    Don't know if I'm the first one to say this, but the HTC One S battery isn't removable. (At least it isn't over here in the UK - don't know if your version in the US is any different).

    Table - Physical Comparison - Page 1
  • Origin64 - Wednesday, October 17, 2012 - link

    I do really want to point out that the iPhone 5 being 20% lighter than the 4 isn't really substantial, seeing as how a Galaxy S 1 weighs about half of that.

    Apple has excellent construction quality, but they build their phones from glass and aluminium and they are heavier than the competition. There's no advantage here, no breakthrough, the iPhone 5 is just a different design that has a thinner battery and less glass. It's not as interesting as you make it seem.
  • thunng8 - Wednesday, October 17, 2012 - link

    What are you on about? The Galaxy S weighs 119g and the iphone 5 weighs 112g.

Log in

Don't have an account? Sign up now