EVGA Z77 FTW In The Box

In EVGA boxes I have looked at in the past, there is a common theme of bundling as much in as you can.  A lot of the extras in the box come in EVGA branded packaging, often individually sealed.  This begs the question of how much this ‘individualization’ brings to the package as a whole, how much it costs to the consumer, and if it is necessary.  Would I care if my additional SATA cables were in an EVGA branded plastic packet, or a non-descript see-through plastic packet?  Nevertheless, there is a lot for your money with the Z77 FTW:

Driver Disk
Quick Start Manual
Quick Start Poster
Rear IO Shield
Four SATA Cables
2-GPU Flexi SLI Bridge
3-GPU Rigid SLI Bridge
SATA Power Cable (2 SATA to Molex)
IEEE1394 Bracket
Four-port USB 2.0 Bracket
Two-port USB 3.0 Bracket

Aside from the packaging, the elements that stand out are the additional rear brackets provided.  This motherboard is geared up to take four GPUs, and thus leave no space for rear brackets.  However no four-GPU SLI connector is provided – the ideal situation is thus a dual GPU system and the brackets can fit in the additional slots.  These brackets also cover all the main headers on the bottom of the board, for completeness.

Voltage Readings

After my first publication of OCCT voltage readings, a few readers responded with a more in-depth reasoning behind some of the results we were seeing.  With this in mind, I would like to re-describe what we are doing with this test, and how it comes about.

Much of what an enthusiast overclocker does is monitor CPU temperature and voltage.  Whatever settings a user places in the BIOS or OS is at the mercy of the motherboard - in terms of actually setting the values and reporting the values back.   As an enthusiast, we have to rely on what readings we get back, and hope that motherboard manufacturers are being honest with their readings.

Take CPU voltage.  What we as a user see in CPU-Z or OCCT is a time-averaged value that hides voltage ripple (if any) for power delivery.  It is very easy for a motherboard manufacturer to hide this value, or to disregard slight deviations and report a constant value to the user.  The CPU voltage reading can be taken at a variety of places on the power plane, which can vary between motherboards and manufacturers, meaning that each reading is essentially not comparable with the other.  Nevertheless, as an enthusiast, we will constantly compare value A with value B. 

Whether or not I can achieve 4.7 GHz with 1.175 volts on a particular board is inconsequential - your motherboard may perhaps produce the same result with a reading at 1.200 volts.  The only way to test the actual value is with consistent methodology is via an oscilloscope connected to similar points on each board.  This may sound like taking an OCCT reading is therefore redundant.

However, motherboards have settings relating to load line calibration.  As load is applied to the CPU, the voltage across the processor decreases (VDroop).  Load Line calibration essentially attempts to control this level of droop, by increasing voltage when voltage drops are detected away from a fixed value.  Manufacturers have different ideas on how to modify LLC with respect to load, or whether the level of modification should be controlled by the user.  Some manufacturers offer the option at a variety of levels, such that overclockers can be sure of the applied setting (even if it increases peak voltage, as explained by AnandTech in 2007).

By doing a full load OCCT test, we are essentially determining both how aggressive the motherboard is reporting the CPU voltage under load and how aggressive load line calibration is performing (from the point of view of the user without an oscilloscope or DVM).  If someone has one of the motherboards we have tested and you have a different one, variations in load voltage should describe the offset you may require for overclock comparisons.

The EVGA Z77 FTW oddly has one of the lowest loading voltages reported by OCCT.  This is also shown in CPU-Z, making the situation a little confusing as to whether this is a predetermined voltage offset scenario or the Load Line Calibration kicking in quite severely with an additional offset that is not reported.

EVGA Z77 FTW Software EVGA Z77 FTW Overclocking
Comments Locked

24 Comments

View All Comments

  • goinginstyle - Thursday, August 23, 2012 - link

    I tried the G1 Sniper 3 and returned it a few days later. The audio was a significant downgrade from the Assassin series, EFI is clunky at best and the board had serious problems with a GSKill 16GB 2666 kit, not to mention the lousy fan controls.

    Purchased a Maximus Formula V and never looked back as the EFI, Fan Controls, Clocking and Audio are much better in every way compared to the Sniper board. There is no way Gigabyte has brought better value than ASUS with the Z77 chipset. You get what you pay for and the GB is overpriced once you actually use the board and compare it to ASUS or even ASRock.
  • JohnBS - Thursday, November 1, 2012 - link

    I am looking for a rock solid MB, so of course I turned to ASUS. However, the reviews from verified buyers showed multiple issues with 3.0 USB ports losing power, system instability after months of use, and multiple instances of the board not working in one or more memory slots. Bent pins from the factory and complete DOA issues as well. A few reports of complete failure when the Wi-Fi card was inserted, yet gone with the card removed. This was mainly the Maximus IV series. Then I thought I'd look into the Maximus V series, because I really wanted ASUS, and was kinda sad to read reviews. Same issues from verified buyers of the Maximus V, more so with the USB 3.0 problems and the Wi-Fi/Bluetooth add-on card failures. In common were multiple complaints about customer service.

    So I emailed the ASUS rep who was replying to everyone's post, with specific attention on the recurring problems and how I was concerned about buying a MB. I got the email back, stating they were aware of the recurring problems listed on the user reviews, but that they are isolated occurrences.

    I really need a rock solid x16 x 2 pci-e mb right now, and that's why I'm still searching. I'm planning on overclocking an i7-2700k with an gtx 690 and a 120z monitor for high res gaming. The sniper 3 looks good, but the front audio plug reaching the board's bottom audio header might be something I can't work around.

    Just want something reliable. If there's a known issue, I'm always in that percentile that gets hit with the RMA process. I'm trying so hard to avoid that.

    (Went with 690 instead of dual 680 for heat, noise, power draw considerations).
  • jonjonjonj - Friday, October 26, 2012 - link

    you mean gigabyte in the evga conclusion?

    "the EVGA does not keep pace with ASUS and EVGA even at stock speeds."
  • couchassault9001 - Friday, November 2, 2012 - link

    So for gaming benchmarks is it correct that the cpu multipliers were at 40 on the g1.sniper and 36 on the evga? if so it seems to be a rather unfair comparison. Being that the sniper cpu is running 11% faster

    I'd be amazed if someone was looking at these boards with no intent to overclock like crazy, as i'm trying to decide between these 2 boards myself, and i'm sure i'll be pushing my 3770k as far as it will go.

    The evga consumed ~8% less power than the sniper under load.

    dirt 3 showed a 9% frame rate drop in the frame rate going from g1 to evga. metro 2033 showed a 3.6% drop in frame rate going from g1 to evga. Both of these are on the 4 7970 benchmarks. the 3 and below the gap is much tighter with it being under 1% with one card.

    I know this may be nit picking to some, but i plan on running 5760x1080 3d so 4 7970 performance on a i7-3770k is exactly what i'm looking at.

Log in

Don't have an account? Sign up now