ASUS P8Z77-V Pro - In The Box

The ASUS P8Z77-V Pro retails at $225-$235, essentially $100 more than the ASRock Z77 Extreme4, so I would expect a good amount in the box to help sweeten the price point.  Thankfully, we get a good amount!

Driver CD
User Manual
IO Panel
4 SATA Cables
SLI Finger
WiFi Go! 802.11 a/b/g/n WiFi card
WiFi magnetic antenna
USB and eSATA back panel
ASUS Q-Connectors

The addition of WiFi on the board obviously adds substantial value – personally, at home, I have my machines connected via WiFi, and ASUS say that at least 25% of their user base is in a similar position, hence the addition to the package.

Voltage Readings

Using OCCT we monitor the voltage change of the motherboard under load.  This represents the direct correlation between the Load Line Calibration and how the processor/motherboard deals with voltage requests while under load.  This is not to be confused with the quality of power delivery, but more an indication of how aggressive the default LLC settings are on a motherboard.

The ASUS board has regular power delivery, with minimal voltage ripple under load.

Overclocking

Note: Ivy Bridge does not overclock like Sandy Bridge.  For a detailed report on the effect of voltage on Ivy Bridge (and thus temperatures and power draw), please read Undervolting and Overclocking on Ivy Bridge.

ASUS overclocking tools have been consistent over the few previous chipsets.  In the BIOS, OC Tuner is a simple setting that enables a ‘Fast’ overclock on the system.  Similarly, the TPU button on board does a similar action.  In the OS, the TurboV Evo part of the software offers ‘Fast’ and ‘Extreme’ auto overclocking modes.  For manual overclocking, the TurboV Evo software allows the user to play with an overclock in the OS, which should aid in setting a more permanent overclock in the BIOS.

Auto Overclock: ‘Fast’ mode (either through BIOS or OS) implements an immediate 19% overclock, with 41x on the multiplier and 102 MHz base frequency, ending with 4182 MHz overall.  This is coupled with a memory overclock, which in my case it did XMP but backed off one memory strap.  What was odd was that the memory was set to a 3T command rate!

‘Extreme’ mode implements a algorithmic testing tool in the OS to probe overclock limits.  By slowly upping the multiplier and voltage, the system performs stability tests until the system crashes.  The system reboots and then implements BCLK tuning, while still monitoring temperatures.  In our test, the initial boot implemented a 20% overclock at 41x103 (4223 MHz), and then performed multiplier testing.  At 47x, the system restarted to 46x and started BCLK tuning.  At 104.5 MHz, the system restarted again, do a ‘Failed Overclock’ screen on boot.  After pressing F1 for Setup, then F10 for Save and Exit, the operating system showed an overall 36% overclock – 46x103.8 (4774 MHz).  At load, this gave 1.280 volts at load, giving an immense 94ºC peak temperature during PovRay.  I do not think I would be happy with that temperature for a daily system.

Manual Overclock: With the overclock performance of Ivy Bridge processors being highly limited by temperature, having a low voltage is key along with hope that it does not compromise the overclock.  In this case, I have started with 1.100 volts on the CPU and adjusting only the CPU multiplier to see what stable overclock we can get, before upping the voltage further.  For this, PLL Overvoltage was also enabled.

At 1.100 volts, the highest multiplier that was stable was 45x, giving 4.5 GHz.  This gave 68ºC at load with PovRay.

At 1.150 volts, the highest multiplier that was stable was 46x, giving 4.6 GHz.  This gave 76ºC at load with PovRay.

At 1.200 volts, the highest multiplier that was stable was 47x, giving 4.7 GHz.  This gave 83ºC with PovRay and 86ºC with OCCT.  The system did boot at 48x, but gave 94ºC under PovRay as well as memory errors.

ASUS P8Z77-V Pro - BIOS and Software Gigabyte GA-Z77X-UD3H - Overview, Visual Inspection and Board Features
Comments Locked

117 Comments

View All Comments

  • drbuzbee - Thursday, May 10, 2012 - link

    The Lan read and write sequential speeds are labeled MBytes ps but undoubtedly are reported in Mbits ps.
  • millisec - Thursday, May 10, 2012 - link

    The Gigabyte UD3 is a nice board but it's a little annoying that's the board GB keeps sending out for reviews because of the $160 price mark. For $29 more you get so much more in the UD5 with Realtek audio, dual lan with Intel/Atheros, PCI 3.0 X4 slot, more sata 3 ports and second Marvell raid controller. The extra $29 buys a lot vs. the UD3 and in IMO is a much better value. Just hoping the UD5 arriving today does not have the same problems with the G.Skill Ripjaws X 2400 kit Anand had. Won't be a happy camper...
  • Zoomer - Tuesday, May 15, 2012 - link

    $29 for extra sata ports = pass. ;)
  • embeddedbill - Friday, May 11, 2012 - link

    Hi Ian, any chance you will have an update on this board?
  • embeddedbill - Friday, May 11, 2012 - link

    What... Did that take about 3 minutes from this question to Anands article?
  • smalM - Friday, May 11, 2012 - link

    Black connectors, video ports, PS/2 - the first manufacturer who omits all that nonsense will get my money.
  • KivBlue - Friday, May 11, 2012 - link

    Gigabyte has gone cheap for sure, I have compared the specs for both on-board audio chips and Realtek clearly has more feature sets. Plus VIA interface looks hideous. My current system's motherboard is Gigabyte and while they have improved things with UEFI, the feature set they have in it is pretty much the same as the old BIOS, ASUS clearly has a more comprehensive UEFI in that regard, I would go with ASUS motherboard in the future as I'm no longer a novice and someone who wants to take full control of a system.
  • bobster1 - Sunday, May 13, 2012 - link

    I've been debugging crashes at stock and overclock for a few days and finally seem to have found the cause, and thought it was worth mentioning here as I didn't see anything about it in the article.

    I was finding my 7970 crossfire/UD3h/3770k setup was locking up frequently in games like the Witcher 2 - the system would freeze and had to be turned off and on again. I discovered by accident that the games became stable if I had prime95 running in the background, and eventually concluded that it must have something to do with the voltages at lighter loads. When I bumped up the voltage to 1.25v in the BIOS (using the static setting, rather than dynamic voltage), it seems to have solved the problem. I'm guessing this is due to Ivy Bridge taking responsibility for pci-e; it's rather unfortunate as it means I can't let the cpu use a lower voltage in an idle state without it rendering the system unstable when rendering 3d.
  • mikeyd55 - Tuesday, June 19, 2012 - link

    Hi,

    First, thank you for addressing this important benchmark!

    Your article notes that POST times can be improved by disabling non essential controllers.

    It would be helpful to know, with the minimum controllers enabled to support a system built on either the PRO or DELUXE (Asus) boards, with: one NIC enabled in OS (only?), boot from one SSD and/or one optical drive connected to Z77 chipset ports (no third party storage controller needed), USB disabled on boot, but enabled in OS (if possible as with certain Intel boards?), and any Wireless option disabled, what could be expected.

  • Conditioned - Wednesday, June 20, 2012 - link

    So how was dpc measured? If you disable intel-c state and all other powersaving features it makes an absolutely huge difference in dpc.

Log in

Don't have an account? Sign up now