AS-SSD High Queue Depth Incompressible Sequential Performance

The AS-SSD sequential benchmark takes place at a very high queue depth of 32 and uses incompressible data for all of its transfers. The result is a pretty big reduction in sequential write speed on SandForce based controllers.

AS-SSD Incompressible Sequential Read Speed

For all intents and purposes, worst case sequential read performance is identical between the Vertex 3 and Intel SSD 510.

AS-SSD Incompressible Sequential Write Speed

While ATTO showed us the Vertex 3 with a signficant advantage over the 510, AS-SSD gives us the other end of the spectrum. If you're going to be copying a lot of H.264 movies around on your SSD, the 510 will likely have better write performance than the Vertex 3. However if you're copying large databases around instead, the advantage will shift back to OCZ/SF.

Performance vs. Transfer Size Overall System Performance using PCMark Vantage
Comments Locked

128 Comments

View All Comments

  • Squuiid - Friday, March 4, 2011 - link

    +1
    They were the 1st of this next gen to be available, yet NOBODY has reviewed them.
    Based on the 2nd Gen Marvel controller I believe, a' la C400.
  • Luke212 - Friday, March 4, 2011 - link

    Anand,

    I am looking to implement SSDs in Application servers and I need to know how they go in Raid 1 over time. Noone seems to test this! So I am stuck with magnetic drives!!
  • sean.crees - Friday, March 11, 2011 - link

    Anyone else notice the Samsung 470 near or at the top of most benchmarks on a 3gb controller? Is this the SSD in current Macbook Pro's? I havn't seen a review posted to Anandtech about this specific device.
  • daidaloss - Tuesday, March 15, 2011 - link

    I'm curious as to how does this SSD drive stacks up when compared to this unit SATA2 DDR2 HyperDrive5 from http://www.hyperossystems.co.uk/.
    Maybe sometime in the future, Anand will consider this RAM drive.
  • tygrus - Wednesday, May 11, 2011 - link

    Not specific to Intel 510 SSD:
    Sequential performance after several full disk GB rewrites ?

    The LBA remapping for wear levelling must make more of the disk look random (not sequential) after every block has been re-written several times. It's a torture test to see how it can handle reading large files that have been spread over several non-sequential NAND blocks. Or does it not matter as much because the controller can optimise access to several NAND dies at once? Does it only remap 512KB at a time or does the 512KB blocks have non-sequential 4KB LBA's written to them?

    Does SSD performance approach random R/W performance after long term heavy use ?
  • gaffe - Tuesday, October 11, 2011 - link

    Just an anonymous tip. I happen to know this data is wildly inaccurate because my friend is a reliability engineer at a major company.

    WHY DON'T YOU DO A SMALL RELIABILITY TEST OF YOUR OWN TO SEE FOR YOURSELF HOW UNLIKELY IT IS THAT THIS DATA IS ACCURATE.

    It seems you have tested probably 20 SSDs for your reviews. So, how many of them have failed on you during testing? How many during the course of the past 3 years? What's the failure rate average across all manufacturers?

    Even though manufacturers probably send you their best tested units for review, and your sample size is small, etc. I am willing to bet you REAL MONEY that the failure rate will be more than 3% even in a sample size of just 20.

    How about we buy 20 SSDs today and in 3 years see who is right, loser buys em all, winner gets em (you can keep the failed ones)?
    Any takers?
  • gaffe - Tuesday, October 11, 2011 - link

    Oh and P.S.

    You forgot to mention above that failure rates are generally PER YEAR. So that's a 3% chance it fails EACH YEAR. And it's still wrong by double or triple (it's closer to 9%).
  • gaffe - Tuesday, October 11, 2011 - link

    Sorry to keep piling on, but it bothers me so much that this inaccurate data is out there and people are believing this that I also want to mention this data does not even say which models were tested. This is probably all enterprise grade drives that does not even apply to consumers that are reading this article, and, as I said above, it's STILL INACCURATE!

Log in

Don't have an account? Sign up now