Moorestown: The Two Chip Solution That Uses Five Chips

Intel calls Moorestown a two-chip solution. That’s the Lincroft SoC and the Langwell IO Hub. Intel says there’s no architecture limitation for splitting these two up, it was just a way of minimizing risk. You put the bulk of the 3rd party technologies in the Langwell IO Hub and keep the important, mostly Intel controlled components in Lincroft. This is still the first SoC that Intel is going to market with, so splitting the design into two chips makes sense. The followon to Moorestown, codenamed Medfield, will integrate these two once Intel is comfortable.


The 45nm, 140M transistor Lincroft die

Lincroft houses the CPU, GPU and memory controller and is built on Intel’s 45nm process. This isn’t the same 45nm process used in other Intel CPUs, instead it’s a special low power version that trades 6 - 8% performance for a 60% reduction in leakage. The tradeoff makes sense since the bulk of these chips will run at or below 1.5GHz. And by the way, it’s now called the Atom Z600 series.

Transistor Comparison
  Intel Atom Z5xx Series Intel Atom Z6xx Series NVIDIA Tegra 2
Manufacturing Process 45nm 45nm 40nm
Transistor Count 47M 140M 260M*
*Tegra 2 is a single chip solution, Intel hasn't provided specs for Langwell

Langwell, now known as the Intel Platform Controller Hub (PCH) MP20, holds virtually everything else. It’s got an image processing core that supports two cameras (1 x 5MP and 1 x VGA), USB 2.0 controller, HDMI output (1080p) and a NAND controller that can support speeds of up to 80MB/s. The whole chip is managed by a 32-bit RISC core.

Langwell is a 65nm chip built at TSMC. TSMC has existing relationships with all of the IP providers for the blocks inside Langwell, so making it at TSMC is a sensible move (a temporary one though, with Medfield Intel will integrate all of this).


Langwell (left) and Lincroft (right)

While Lincr, err, Atom Z600 and the Intel PCH MP20 are enough for a traditional system, they are not enough for a smartphone. You need wireless radios, that’s one chip for WiFi and one for 3G support. You need something to handle things like power management, charging the battery and controlling the touch screen. That’s an additional chip, called Briertown.

We’re up to four chips at this point, but you need at least one more. While modern day smartphone SoCs ship with on-package memory, Intel doesn’t yet support that. Obviously it’s not impossible to do, Marvell, TI, Qualcomm and Samsung do it with all of their SoCs. Look inside Apple’s iPad and you won’t see any DRAM chips, just a Samsung part number on the application processor package. Intel doesn’t have the same experience in building SoCs and definitely not in integrating memory so it’s not a surprise we don’t have that with Moorestown. Unfortunately this means a smartphone manufacturer will need as many as five discrete chips to support Moorestown.

Platform Size
  Moorestown
CPU + Chipset 387 mm2
Total Platform Area 4200 mm^2
SoC Package Size 13.8 mm x 13.8 mm x 1.0 mm
PCH Package Size 14 mm x 14 mm x 1.33 mm

And now we know why Intel has been showing off its extremely long form factor prototype all this time:

The World Changes, MIDs Ahead of Their Time Aava to the Rescue: An iPhone Sized Moorestown Platform
POST A COMMENT

67 Comments

View All Comments

  • CSMR - Wednesday, May 05, 2010 - link

    Agreed. Intel needs a process advantage to beat ARM with x86. (Notwithstanding the software pain of transitioning to x86). But it actually doesn't have it. They are roughly on par in this segment, Intel leading by maybe a few months.
    http://channel.hexus.net/content/item.php?item=225...
    Reply
  • hyvonen - Wednesday, May 05, 2010 - link

    Sorry, but Intel is ahead way more than two months. Intel's 32nm process is better from performance/power point of view than 28nm bulk processes from others. Relying on numbers such as 32nm and 28nm to figure out which one is better is like using only CPU clock frequency numbers to determine which CPU is fastest.

    Oh, and since Intel's 32nm products started shipping in the beginning of this year, Intel is roughly a year ahead... maybe more.
    Reply
  • metafor - Wednesday, May 05, 2010 - link

    Yes and no. The 32nm shipping is the high-performance (high leakage) one used in desktop/laptop processors and also the current Atom. For a smartphone, that simply won't do.

    The 45nm low-leakage process they used for Moorestown is new territory for Intel and in that respect, they are behind TSMC. While the current bulk silicon 45nm isn't faster than Intel's metal gate 45nm, it's a lot less leaky in terms of power. I would guess it'll take Intel 2 iterations or so before they have leakage down to the point of being competitive. But they have performance going for them.
    Reply
  • hyvonen - Wednesday, May 05, 2010 - link

    Yeah; first iteration: 45nm low-power process. Second iteration: 32nm low-power process.

    TSMC is stuck, and won't be able to come up with a low-power process beyond the current one for a couple of years. 40nm is in trouble, 32nm is toast. Good luck with making anything below 32nm "low power" in any sense of the word.
    Reply
  • LuxZg - Wednesday, May 05, 2010 - link

    Ok, so this should be x86 CPU. So will the "tablet version" support normal Windows 7 OS or something similar? That's my only question.. I don't expect Win 7 on smartphone, but unless we have 100% software compatibility "x86 everywhere" won't mean much to people (except to Intel). Reply
  • iwodo - Wednesday, May 05, 2010 - link

    It looks great, If Intel could give Apple some VERY good deal i guess Apple might take it.

    I cant wait for the 32nm Medfield.

    But Apple using it would means no more surprise in terms of Hardware.....
    Reply
  • iwodo - Wednesday, May 05, 2010 - link

    After reading, I still do not understand the idea why Apple needs to buy other Chip Maker. If Morrestown is this good, and Medfield is much better. ( Apple should know it well before hand ) why spend money.

    Intel is making chips at volume much cheaper then Apple designing and making their own. Hardware CPU dont differentiate the product. Outlook and Software does.
    Reply
  • WaltFrench - Sunday, May 09, 2010 - link

    “…I still do not understand the idea why Apple needs to buy other Chip Maker. If Morrestown is this good, and Medfield is much better.”

    I think you answered your own question. Apple, who probably had some inkling of Intel's plans, has been plowing ahead with proprietary silicon. They must think that for the next couple of years, anyway, they're better off with ARM-based designs, tweaked in-house and sent to whatever foundry gives them the capability they need.

    Can anybody estimate the number of Atom-class chips Intel sells? The general estimates are that ARM designs go into a billion devices per year, and Apple is probably thinking that they'll move 50 or 100 million per year. Intel would appear to have a serious resource/investment challenge, in addition to the business challenge of talking people into abandoning ARM.
    Reply
  • Visual - Wednesday, May 05, 2010 - link

    Let me see if I get this straight... this is a x86 system. And it will NOT run standard x86 OSes or binaries?
    If so, the developers of this are complete idiots.

    It must definitely have the ability to run normal desktop windows apps at launch - either by running a full windows OS, maybe modded to make better use of small screen and no kbd, or at least by some wine-like layer. It must run dosbox with the dynamic core.

    Else it being x86 is completely useless.
    Reply
  • safcman84 - Wednesday, May 05, 2010 - link

    Windows 7 for Phones is hardly an established Smartphone OS. As this chip is targeted for Smartphones, then not having support for Windows is not an issue.

    Besides, why would Intel support a OS that is not optimised for their CPU when it is touted as the most powerful smartphone solution ? A non-optimised OS will make the chip look bad. If Intel supports andriod devices (plus MeeGo and Moblin) suddenly get 2x the performance, with excellent battery life then Intel's decision not to support Windows based phones could force MS to optimise their OS for use on Moorestown, otherwise Windows based devices dont have a chance.
    Intel have not said they will NEVER support windows devices, just that they dont at the moment cos the current iteration of Windows 7 for phones is unoptimised.

    In addition, as someone who used Smartphone for use with work, I would happily deal with the inconvenience of having a slightly longer phone if I got 2x the performance for the same battery life.

    If the theoretical performance proves true in practice then:

    Andriod + Moorestown = Yes please
    Reply

Log in

Don't have an account? Sign up now