Using a Higher Efficiency PSU to Reduce Costs

These days manufacturers are all promoting their high efficiency power supplies, and we have organizations and certifications like 80 Plus encouraging even small boosts in efficiency. Not surprisingly, plenty of users have been sucked in by the marketing and are now convinced that they need to purchase a new power supply in order to save money each year. Does it really make that much of a difference? The answer as usual depends on how you use your system. The previous page provided a baseline measurement, but now let's look at how much money you can save if you go out and purchase a new 80 Plus Bronze or Silver certified power supply as an upgrade to a slightly older ~80% efficiency PSU.

Our sample power supplies on the previous page are all relatively high-end choices for the specific market. Many (most) systems don't have power supplies anywhere near that nice, relatively speaking. So what happens when we switch to an older ATX 1.3 PSU -- something that would have been more or less state-of-the-art three years ago? Will a newer power supply really help you save the planet? Will it at least reduce your power costs and save you money? Let's find out, this time looking at power costs over the course of a full year: 24 hours a day, seven days a week.

For reference, we looked at some PSU efficiency results stashed away in our files and estimated ATX1.3 PSU efficiency at 75% idle and 78% load. That represents a high-end ATX1.3 PSU, and in some cases the discussion is hypothetical as it wouldn't be possible to find an older PSU with the necessary output rating. (That applies specifically to the high-end system.)

System 1 24/7 Yearly Costs
ATX1.3 versus ATX2.2
  Outlet Power
ATX v2.2
Outlet Power
ATX v1.3
Wattage
Difference
Savings NC Savings CA Savings GER
Idle 110 120 10 $6.57 $11.21 €19.27
($25.05)
Load 167 179 12 $7.88 $13.46 €23.13
($30.06)

System 2 24/7 Yearly Costs
ATX1.3 versus ATX2.2
  Outlet Power
ATX v2.2
Outlet Power
ATX v1.3
Wattage
Difference
Savings NC Savings CA Savings GER
Idle 190 213 23 $15.11 $25.79 €44.33
($57.62)
Load 412 449 37 $24.31 $41.49 €71.31
($92.70)

System 3 24/7 Yearly Costs
ATX1.3 versus ATX2.2
  Outlet Power
ATX v2.2
Outlet Power
ATX v1.3
Wattage
Difference
Savings NC Savings CA Savings GER
Idle 369 413 44 $28.91 $49.34 €84.80
($110.24)
Load 663 705 42 $27.59 $47.09 €80.94
($105.23)

Now we can see exactly how much money you might save during the course of a year by purchasing a new high efficiency power supply. Obviously, the more power your computer uses, the better your monetary savings. Looking at these tables, you might begin to think there's actually a point in upgrading power supplies -- and there is, provided you're running your computer a large portion of the time.

What happens if we change our usage model to something more realistic for most families? Instead of looking at 24/7 usage, let's change it to three hours of use per day on average, with two hours at idle and one hour at load.

Yearly Power Savings for 3 Hrs/Day
  Savings NC Savings CA Savings GER
System 1 $0.88 $1.50 €2.57
($3.34)
System 2 $2.27 $3.88 €6.66
($8.66)
System 3 $3.56 $6.07 €10.44
($13.57)

The need to upgrade power supplies suddenly doesn't seem as dire once we switch to a more realistic usage model. Particularly on low-end systems that only use 100W of power give or take, even an extremely inefficient PSU probably doesn't matter too much if the system isn't on more than a few hours per day. Even with power costs that are up to three times higher in some parts of Europe compared to areas in the US, the savings don't make sense.

If you happen to be the type of user that leaves your system on all the time, certainly you can save a fair amount of money by purchasing a better power supply. An easier solution would simply be to turn off your computer when it's not in use, unless you have a really good reason to leave it running overnight. Similarly, if your current PSU happens to fail, it might be worthwhile to spend a little bit more money to get a higher efficiency, better quality power supply. If you figure on a moderate amount of use and a five-year lifespan, you might want to spend as much as $50-$100 extra. Otherwise, there's very little incentive to go out and spend $150 on a top quality power supply just so you can save $10-$15 per year (or less).

Actual System Power Costs The Difference a Few Percent Makes
Comments Locked

59 Comments

View All Comments

  • JarredWalton - Friday, November 14, 2008 - link

    If the laptop isn't plugged in, the power brick should use 0W (or at least less than 1W).
  • MadMan007 - Friday, November 14, 2008 - link

    ...and thi quote is the most important one that made me decide it's not economically meaningful to upgrade from a ~75% PSU to an 85% one. When you do these estimates on non-24/7 use the savings plummet quickly.
  • MadMan007 - Friday, November 14, 2008 - link

    Grr...quote window didn't work right, why can't we just use tags?

    Anyway here's the quote:
    "If you only run the system eight hours per day, however, the difference in cost drops off quickly."
  • Nfarce - Friday, November 14, 2008 - link

    "Hopefully we've made it clear that upgrading an existing power supply to a higher efficiency model purely for the power savings doesn't make sense."

    I am not nor have I ever been concerned how much power my PCs use (or my PS3). Compared to other "hobbies" such as street racing, cruising, spending $50/night bar hopping, and other things people get involved with and in trouble over, PC and console gaming at home is cheap and relatively environmentally friendly. Besides, the logic behind spending hundreds on a higher efficiency PS to lower utility bills is about as brilliant as spending $30,000 on a new hybrid Camry to save money on gas. But if it makes you feel better about yourself, hey, it's *your* money.

    However, as we shift to a new administration in the States next year which has already stated it wants to target the coal industry, I might have a change of tune. We will see utilities skyrocket with the green syndrome of progressing to wind farms and solar power that just won't make up for coal fired plants. We already know the environmentalists and other special interest hacks here will poo-poo on nuclear power.

    Talk to me in two years...
  • Griswold - Friday, November 14, 2008 - link

    About time you share our energy pain in europe, then. :P
    You're still not where we are as far as gasoline goes...
  • 7Enigma - Monday, November 17, 2008 - link

    Then blame your government. Your high gas prices are a direct result of high taxes (likely to pay for the universal healthcare), not that we in the US get a better deal.
  • yyrkoon - Friday, November 14, 2008 - link

    Using less power will *always* benefit a household more than anything else concerning saving money where power is the concern. It is also not just a one item deal when trying to figure out how to cut power costs. Refrigerators/deep freezers commonly in most households use more power than anything else. Microwaves, coffee makers, rice cookers, and hair dryers etc can all use more power, but typically run for far less time. Another place to save on power costs would be changing the type of lightning one uses, say from incandescent lighting to LED lighting.

    However, as has been said by many people before in the past, many many times: there is no such thing as a free lunch. Saving power by using a more efficient light as an example is of course going to cost you more money. But also with LED lights you're going to pay a premium for those more efficient lights. So, in the short term, best way to save money is just to turn that item off when not in use. This goes for VCR's, Computers, or whatever does not need to be plugged *right_now*(and yes, most of us should know that most appliances do draw at least some power when off, but still plugged in). Even going completely off grid(meaning you get your power 100% from solar, wind, or multiple other sources) is going to be just like paying your power bill up front, with reoccurring charges for batteries, and maintenance for your equipment. In case of the latter expect to pay tens of thousands of US dollars just for the price of admission.

    Now, as for as strictly Power Supplies are concerned, Yes a more efficient power supply *will* save you money. How much really depends, and there are other factors to consider than "how efficient it *is*'. You need to determine exactly how much power your system will consume, and procure a PSU that is most efficient at that power level. Just because a power supply is 99.9% efficient does not mean it will work well for your given application. Other factors would be longevity, and reliability. Data centers often purchase PSU's where the given system using them only uses 25-40% of that PSU's capacity. This is why current technology is 'trending' towards power supplies with a better/broader power efficiency range(e.g. they are most efficient on the power curve where they are planned to be loaded at). That said, these types of power supplies used by data centers, etc are not of the off the shelf variety(usually).

  • Staples - Friday, November 14, 2008 - link

    There are a ton of people who leave their computers on 24/7 for no good reason. I am a tree hugger and of course I put mine into S3 sleep if I even walk away for more than 10 minutes. Plus, my second computer is very low power because I bought really low power parts for it including one of the most important, integrated video.

    In my main computer, I have an ATI 4850 which sucks a lot of power even being idle and I have a guilty conscious about even using for non gaming needs. Hybrid VGA power state hardly exists now but I am glad it will be coming eventually because powerful video cards sitting idle is one of the biggest wastes of power. Also, I am glad that Vista has Cool and Quiet built in because most people do not even know you need software to make it work (unlike Intel's speed step which works without any software).
  • cyclo - Saturday, November 15, 2008 - link

    This is where nVidia currently has ATI beat. I'm not sure about nVidia's cards on the lower end of the scale but on the GTX 2xx class of cards, they implement a power saving "2D" mode when the GPU is mostly idling (basically when not playing games or videos).

    On my GTX 260, the GPU core downclocks to 301 (from 621), the shader to 602 (from 1295), and the memory to 200 (from 2052) when I am just surfing the web (which is basically "2D" mode). The clocks go up to default as soon as I start playing a video and of course start playing a game. The temps at "2D" mode goes down to 47 C from 54 C in idle "3D" mode (playing a video).

    There is one problem though and I hope nVidia can fix this with a future driver release. That is when you run 2 monitors the video card never goes into "2D" mode... even when you are not gaming or playing a video. This is why I am forced to disable my 2nd monitor whenever I don't have a need for it.
  • JarredWalton - Saturday, November 15, 2008 - link

    ATI has been doing the same thing for about as long as NVIDIA. There was an issue with 4870 initially where the power saving modes didn't engage properly, but that has been fixed for a while now. NVIDIA is more aggressive, however, on dropping clocks and reducing voltages as well I think.

    Speaking of multi-monitor support, wasn't there a problem with NVIDIA cards and dual monitors with certain 3D engines? Also seem to recall hearing the second display gets shut off in all 3D games on NVIDIA. Maybe that was fixed as well, though.

Log in

Don't have an account? Sign up now