The A12 Vortex CPU µarch

When talking about the Vortex microarchitecture, we first need to talk about exactly what kind of frequencies we’re seeing on Apple’s new SoC. Over the last few generations Apple has been steadily raising frequencies of its big cores, all while also raising the microarchitecture’s IPC. I did a quick test of the frequency behaviour of the A12 versus the A11, and came up with the following table:

Maximum Frequency vs Loaded Threads
Per-Core Maximum MHz
Apple A11 1 2 3 4 5 6
Big 1 2380 2325 2083 2083 2083 2083
Big 2   2325 2083 2083 2083 2083
Little 1     1694 1587 1587 1587
Little 2       1587 1587 1587
Little 3         1587 1587
Little 4           1587
Apple A12 1 2 3 4 5 6
Big 1 2500 2380 2380 2380 2380 2380
Big 2   2380 2380 2380 2380 2380
Little 1     1587 1562 1562 1538
Little 2       1562 1562 1538
Little 3         1562 1538
Little 4           1538

Both the A11 and A12’s maximum frequency is actually a single-thread boost clock – 2380MHz for the A11’s Monsoon cores and 2500MHz for the new Vortex cores in the A12. This is just a 5% boost in frequency in ST applications. When adding a second big thread, both the A11 and A12 clock down to respectively 2325 and 2380MHz. It’s when we are also concurrently running threads onto the small cores that things between the two SoCs diverge: while the A11 further clocks down to 2083MHz, the A12 retains the same 2380 until it hits thermal limits and eventually throttles down.

On the small core side of things, the new Tempest cores are actually clocked more conservatively compared to the Mistral predecessors. When the system just had one small core running on the A11, this would boost up to 1694MHz. This behaviour is now gone on the A12, and the clock maximum clock is 1587MHz. The frequency further slightly reduces to down to 1538MHz when there’s four small cores fully loaded.

Much improved memory latency

As mentioned in the previous page, it’s evident that Apple has put a significant amount of work into the cache hierarchy as well as memory subsystem of the A12. Going back to a linear latency graph, we see the following behaviours for full random latencies, for both big and small cores:

The Vortex cores have only a 5% boost in frequency over the Monsoon cores, yet the absolute L2 memory latency has improved by 29% from ~11.5ns down to ~8.8ns. Meaning the new Vortex cores’ L2 cache now completes its operations in a significantly fewer number of cycles. On the Tempest side, the L2 cycle latency seems to have remained the same, but again there’s been a large change in terms of the L2 partitioning and power management, allowing access to a larger chunk of the physical L2.

I only had the test depth test up until 64MB and it’s evident that the latency curves don’t flatten out yet in this data set, but it’s visible that latency to DRAM has seen some improvements. The larger difference of the DRAM access of the Tempest cores could be explained by a raising of the maximum memory controller DVFS frequency when just small cores are active – their performance will look better when there’s also a big thread on the big cores running.

The system cache of the A12 has seen some dramatic changes in its behaviour. While bandwidth is this part of the cache hierarchy has seen a reduction compared to the A11, the latency has been much improved. One significant effect here which can be either attributed to the L2 prefetcher, or what I also see a possibility, prefetchers on the system cache side: The latency performance as well as the amount of streaming prefetchers has gone up.

Instruction throughput and latency

Backend Execution Throughput and Latency
  Cortex-A75 Cortex-A76 Exynos-M3 Monsoon | Vortex
  Exec Lat Exec Lat Exec Lat Exec Lat
Integer Arithmetic
ADD
2 1 3 1 4 1 6 1
Integer Multiply 32b
MUL
1 3 1 2 2 3 2 4
Integer Multiply 64b
MUL
1 3 1 2 1
(2x 0.5)
4 2 4
Integer Division 32b
SDIV
0.25 12 0.2 < 12 1/12 - 1 < 12 0.2 10 | 8
Integer Division 64b
SDIV
0.25 12 0.2 < 12 1/21 - 1 < 21 0.2 10 | 8
Move
MOV
2 1 3 1 3 1 3 1
Shift ops
LSL
2 1 3 1 3 1 6 1
Load instructions 2 4 2 4 2 4 2  
Store instructions 2 1 2 1 1 1 2  
FP Arithmetic
FADD
2 3 2 2 3 2 3 3
FP Multiply
FMUL
2 3 2 3 3 4 3 4
Multiply Accumulate
MLA
2 5 2 4 3 4 3 4
FP Division (S-form) 0.2-0.33 6-10 0.66 7 >0.16 12 0.5 | 1 10 | 8
FP Load 2 5 2 5 2 5    
FP Store 2 1-N 2 2 2 1    
Vector Arithmetic 2 3 2 2 3 1 3 2
Vector Multiply 1 4 1 4 1 3 3 3
Vector Multiply Accumulate 1 4 1 4 1 3 3 3
Vector FP Arithmetic 2 3 2 2 3 2 3 3
Vector FP Multiply 2 3 2 3 1 3 3 4
Vector Chained MAC
(VMLA)
2 6 2 5 3 5 3 3
Vector FP Fused MAC
(VFMA)
2 5 2 4 3 4 3 3

To compare the backend characteristics of Vortex, we’ve tested the instruction throughput. The backend performance is determined by the amount of execution units and the latency is dictated by the quality of their design.

The Vortex core looks pretty much the same as the predecessor Monsoon (A11) – with the exception that we’re seemingly looking at new division units, as the execution latency has seen a shaving of 2 cycles both on the integer and FP side. On the FP side the division throughput has seen a doubling.

Monsoon (A11) was a major microarchitectural update in terms of the mid-core and backend. It’s there that Apple had shifted the microarchitecture in Hurricane (A10) from a 6-wide decode from  to a 7-wide decode. The most significant change in the backend here was the addition of two integer ALU units, upping them from 4 to 6 units.

Monsoon (A11) and Vortex (A12) are extremely wide machines – with 6 integer execution pipelines among which two are complex units, two load/store units, two branch ports, and three FP/vector pipelines this gives an estimated 13 execution ports, far wider than Arm’s upcoming Cortex A76 and also wider than Samsung’s M3. In fact, assuming we're not looking at an atypical shared port situation, Apple’s microarchitecture seems to far surpass anything else in terms of width, including desktop CPUs.

The Apple A12 - First Commercial 7nm Silicon SPEC2006 Performance: Reaching Desktop Levels
Comments Locked

253 Comments

View All Comments

  • Constructor - Wednesday, October 10, 2018 - link

    Multicore A12 performance seems mostly limited by the passive cooling in a handheld device. That is where the much higher power availability and active cooling in a notebook or desktop makes the biggest difference.

    It's single-core performance where you see the most of the actual core performance. By allowing for higher power consumption and using active cooling Apple should be able to scale up multicore performance relatively easily (and some of the iPads with additional CPU cores, notebook-sized batteries and at least improved passive cooling have already demonstrated that).
  • zeeBomb - Monday, October 8, 2018 - link

    Andrei came thru...thank you!!!
  • zeeBomb - Monday, October 8, 2018 - link

    Does anyone here still use a seperate camera app for Night time photos instead of the stock one? Like NightCap Pro, etc.
  • tmi_(') - Monday, October 8, 2018 - link

    Andrei, nice analysis!
    can you write something about new storage controller in A12?
  • strajk - Tuesday, October 9, 2018 - link

    -"Apple’s CPU have gotten so performant now, that we’re just margins off the best desktop CPUs"
    That sentence alone discredits your whole article, this has to be one of the most stupid things I've ever read in a review the past years.
    A mobile ARM CPU isn't even faster than a Pentium 4 in pure IPC, and they perform in completely different instruction sets...

    That statement was so moronic that it forced me to create an account just to call you out on this.
  • Andrei Frumusanu - Tuesday, October 9, 2018 - link

    > this has to be one of the most stupid things I've ever read in a review the past years.

    Did this cause you to write something even more stupid in the following sentence?

    > A mobile ARM CPU isn't even faster than a Pentium 4 in pure IPC

    The P4's IPC was overtaken by mobile devices maybe half a decade ago. That's such a ridiculous claim.

    > and they perform in completely different instruction sets...

    So what? How is that relevant? The same high language workloads are compiled for the respective ISAs. Please do explain how that is not comparable.
  • Boxador - Wednesday, October 10, 2018 - link

    Andrei, keep kicking ass. This review and your comment responses are fire.
  • tipoo - Thursday, October 18, 2018 - link


    People who deny that ARM designs especially from Apple have closed in on x86 performance, and in Apples case often beaten it, are starting to remind me of flat earthers.
  • Silma - Friday, October 12, 2018 - link

    Regarding processor power.
    Apart from gamers, is the increase in processing power perceptible to the user, for which applications and is it noticeable?
    I have a 2.5 year old phone with a SnaDragon 810 and its performances still suit me just fine. In a future purchase, I would mostly look for improvements on battery autonomy.
  • tipoo - Wednesday, October 24, 2018 - link

    I thought a Core 2 Duo felt fine until I got a Haswell system, I suspect it would be similar for you going to this. The improvement just in web page loading speed alone would be significant.

Log in

Don't have an account? Sign up now