Core i3-7350K vs Core i7-2600K

When I started testing for this review, finding out how close the Core i3-7350K was to the favored Core i7-2600K was anticipated to be interesting. Several years of IPC increases in favor of the Core i3, plus the extra frequency and overclockability, were to be put against brute force in the form of more, but older, cores. The Core i7-2600K is certainly no slouch. It's a good overclocking chip in its own right, hitting almost 5.0 GHz on a good sample, which has made it a very difficult processor for Intel to get users to upgrade from in this recent area of minimal IPC increases per generation.

That’s not to say that IPC increases are entirely Intel’s fault – at some point there is only so many knobs you can turn and twist in a given CPU microarchitecture. But the lack of IPC gain can come from the big questions: if we have GPUs at 250-300W, why not CPUs? Is Intel’s process focused on performance, power, or die size? If you speak to a few analysts, you get a wide variety of reasoning as to how Intel does things, but money is usually the key factor. This is perhaps a topic to discuss on a podcast!

But to the matter at hand: there will be a time where a Core i3 based CPU will match the performance of the older Core i7-2600K. This is what the testing was about: at what point will we have enough frequency and IPC gain to match the older chip, potentially saving a bunch of power in the process? It’s not necessarily a question of upgrading – high-performance enthusiasts rarely upgrade to a system that gives equal performance at lower power, but it does offer that understanding that perhaps the Core i7-2600K might be showing its age.

At a high level, the two CPUs have the following:

Kaby Lake i3 vs Sandy Bridge i7 Comparison
Launch Pricing
CPU Year Cores
Threads
Freq Turbo L3 IGP DRAM TDP Price
Core i3-7350K 2017 2/4 4.2 - 4MB HD 630 DDR4-2400 60W $168
Core i7-2600K 2011 4/8 3.4 3.8 8MB HD 3000 DDR3-1333 95W $317
 

The Core i7-2600K has more cores and more cache. The Core i3-7350K has a higher frequency, better memory controller, better integrated graphics, is more efficient, and was released at almost half the cost. The big question is if frequency plus IPC can match the brute force of more cores.

Throughout the results, each benchmark that has results between the two processors has commentary on the Kaby Lake-i3 vs Sandy Bridge-i7 performance.  Here’s a brief summary:

Kaby Lake i3 vs Sandy Bridge i7 Performance Difference
  Average Peak Minimum
CPU Single Thread +25% +44% +4%
CPU Multi-Thread -18% -40% +3%
Low GPU (R7 240) +2% +5% +1%
Mid GPU (R9 285/GTX 770) +10% +24% 0%
High GPU (R9 290X/GTX 980) +2% +16% -5%
Integrated Graphics +200% +296% +120%

As expected, the Core i3-7350K takes the single threaded performance win.  In every benchmark the Core i3 was ahead up to +44%, with an average of +25%.

With the multithreaded CPU tests, the extra cores and threads of the older Core i7-2600K were often more than enough to overcome the newer part. The Core i3-7350K does, on average, -18% less work than the Core i7-2600K, which manifests itself as anything from being near equal to a -40% loss in throughput (or taking almost 1.8x the time to finish the same task). Benchmarks that fall into the latter category are mostly tasks that have large threads competing for size in the cache, meaning the contest essentially becomes two cores vs four cores. Even with CPU and IPC, that’s a tough mark to jump over.

For the gaming tests, putting aside the obvious win on integrated graphics for Kaby Lake, in our game tests we saw parity at the high end. Only one serious high-end GPU test saw a win for Kaby Lake, giving +16% performance gain, but the interesting results occur on mid-range cards. For mid-range, the newer Core i3 test out-performed the older Core i7 by an average of 10%, which ranged anywhere from equal to +24% (Mordor at 1080p Ultra).

Ultimately the Core i3 parts are marketed towards the mid-range GPU gaming community, and the addition of overclocking may be enough to push a user to get a Core i3-K instead of a Core i5, migrating money over to a different part of the PC. But for our gaming tests, the Core i3-7350K certainly matches the Core i7-2600K.

Ultimately, however, the users who fully stretch the legs of the Core i7 through other means, such as compute-heavy work, already need the power of all the cores. As shown in our multithreaded tests, while the Core i3 is hot on the heels of the Core i7-2600K, the deficit of having two fewer cores is very difficult to overcome. That becomes more difficult as we overclock both CPUs into the 4.8 GHz region, where the 400-600 MHz frequency advantage of the Core i3 is lost and the contest is purely on IPC, cores and stability.

The Core i3-7350K, as a CPU, is not enough to encourage users who already push the Core i7-2600K to the absolute limit and want to stay there. For everyone else though, where responsiveness is more important, or in casual gaming, the Core i3-7350K becomes an adequate side step from the i7-2600K to decrease power consumption and move onto a new platform (and have the joy of building a new PC again). Windows 10 users also get the benefit of Speed Shift, affording more ‘free’ performance for responsive tasks.

It is worth noting that moving to the Core i3-7350K affords non-CPU related benefits. Moving from a P67/Z68 motherboard to a Z270 motherboard means:

  • GPU slots operate at PCIe 3.0, rather than PCIe 2.0 (on Z68)
  • More chipset PCIe lanes (24 lanes at PCIe 3.0 rather than 8 lanes at PCIe 2.0)
  • Support for bootable NVMe storage and PCIe storage
  • Newer audio codecs and networking controllers
  • Updated Intel RST (RAID/Caching)
  • A move from DDR3-1333 to DDR4-2400
  • Native USB 3.0 Ports from the chipset rather than from controllers
  • USB 3.1 (10 Gbps) on board via controllers rather than a add-in PCIe card
  • Potential Thunderbolt 3 support (depending on motherboard)
  • USB Type-C
  • This RGB fad that apparently sells like hot cakes
  • More SATA 6 Gbps ports (six on Z270 vs two on Z68)

At What Point Will the Performance of A Core i3 Beat the Core i7-2600K?

If we’re only speaking performance (I’m sure Intel would rather happily speak efficiency), judging by our benchmark results, we’re almost there already. For all but the most strenuous tasks that require large caches, the Core i3 already wins out. Unfortunately these are the tasks where the Core i3 needs a clear 2x performance gain per core to match the Core i7-2600K. For these tasks, anywhere from -30% to -40% loss to the Core i3 in our test can be a deciding factor in purchasing.

Let’s take a score based test, such as POV-Ray. Here the Core i3-7350K scored 1009 points, compared to the Core i7-2600K which scored 1323 points (or +31.1%). Based on the overclocking tests, each 100 MHz on the Core i3 resulted in +25 points, and that rise was essentially linear from 4.0 GHz to 4.8 GHz.

With extrapolation, the 314 point deficit requires an extra ~1250 MHz for the Core i3 to match that result.

So, all we need is a 5.45 GHz dual-core processor with Kaby Lake IPC.

Or, think of it another way. If we assume Intel creates a 5% IPC increase year-on-year, a 4.2 GHz Core i3 will score 1059 next generation, then 1112, then 1168, and so on, until we hit a score of 1352 in six more generations. Roll on 2025?

(As an aside, the best tested Kaby Lake CPUs from the world’s best overclockers can reach a semi-stable 5.3-5.4 GHz using water cooling, using AVX offset, but beyond that (and for 100% stability) requires sub-zero cooling.) 

Power and Overclocking Conclusion: Casual Enthusiasts Rejoice
Comments Locked

186 Comments

View All Comments

  • forgot2yield28 - Sunday, February 5, 2017 - link

    Agreed, the timing of the first ever i3 K variant just ahead of Ryzen seems more than just coincidental. Intel seems to be arguing that for value minded users, the IPC and high clocks will make this a better prospect that Ryzen's many-core and likely somewhat lower IPC. That's not new, what is new is that little K on the end meant to capture that market segment of users on a budget who still want the fun of overclocking. Before, the logic was always that intel wouldn't release an i3 K because it would canabalize i5 sales. Now they seem to be proactively guarding a piece of market share that would pick an overclockabe Ryzen chip instead of an i5. Competition is a wonderful thing!
  • futurepastnow - Sunday, February 12, 2017 - link

    "I'd say they are preemptively stacking the product deck prior to the release of AMD Ryzen"

    Yep, Ryzen will also launch with its high-end parts first- AMD's competitiveness will not filter down to low-end parts until 2h16. Until 2C4T Ryzen parts appear, Intel will still have a monopoly on good cheap processors so the more they can sell in that time, the better, for them.
  • futurepastnow - Sunday, February 12, 2017 - link

    I meant 2h17 lol, I write the date a dozen times a day and still get it wrong.
  • zeeBomb - Friday, February 3, 2017 - link

    Hmm. What should I get instead of this then around the price range or cheaper?
  • CaedenV - Friday, February 3, 2017 - link

    how about a non-k i3?
    I mean look at the charts, they keep up just fine. Sure, you don't get overclocking capability, but you also get to save money by not needing a custom cooler ($30-50), or a z-series motherboard ($30-150), and the chips themselves are cheaper ($30-50). That saves you some $90+ on your build right there, while offering most of the performance. Either pocket the money, or spend it on a good SSD or better GPU.
  • stardude82 - Friday, February 3, 2017 - link

    G4560... $64. Widely available now. Preforms just below a i3-6100/i5-2500 above Haswell i3s.
  • Alexvrb - Friday, February 3, 2017 - link

    If you want to go cheaper, see CaedenV's post below. If you're thinking about staying in roughly the same price range, get an entry-level i5. Something like a i5-7400. The cost of the processor itself is higher, but the total platform price will be around the same because of cost-savings elsewhere, like Caeden listed for the i3 non-K. You won't need to worry about overclocking so no need for upgraded cooling, and no need for an overclock-friendly board.
  • CaedenV - Friday, February 3, 2017 - link

    The i3 available back in the day suffered from quite a few things at the time, and had rather dramatic setbacks compared to the i5 and i7 offerings of the day. Still not bad as an entry level gaming CPU... but even it would bottleneck a mid to high range GPU at the time.
    But today's i3 offerings are able to offer enough performance to keep up with even today's mid to high end GPUs without problem! Part of that is the move to PCIe3, part of it is efficiency making up for a lack of cores, and part of it is simply because more and more games support HT cores where that use to not be the case.
    On a win10 system there is even more advantage as it is better at off-loading background processes to less used cores, so even if your game does not take advantage of HT, windows will in order to alleviate the heavily loaded 'real' cores.

    I think the really amazing thing to look at in these charts are how well the non-K i3 chips do. You can save a lot of money if you can give up OC and ~2-300 MHz. a plain-jane i3 on a B or H series chipset and a single mid to high-end GPU would game fantastically compared to a high-end i7 with z-series chip. Still not amazing for content creation (though not bad for a hobbiest)... but if all you are doing is video games, office/school work, web browsing, and watching videos then it is getting harder and harder to recommend anything other than an i3.
  • cocochanel - Friday, February 3, 2017 - link

    I don't understand most comments. If you're gaming, an extra 50$ for an i5 is nothing. A CPU is good enough for 3-4 years. How much are you going to spend on games in that time period ? Here in Canada, Battlefield 1 Premium costs about 160$. That's just one game. How many games are you going to buy ? More than a few I guess. Besides, with DX12 and Vulkan becoming mainstream API's, a quad core is must. Just get an i5 or Ryzen and forget about it.
  • javier_machuk - Friday, February 3, 2017 - link

    Am I the only one that thinks that these test should have been between the overclocked speeds of both processors? Isn't the idea behind an unlocked processor that you overclock it?

Log in

Don't have an account? Sign up now