Some Final Thoughts and Comparisons

With the Hot Chips presentation we’ve been given more information on the Zen core microarchitecture than we expected to have at this point in the Zen design/launch cycle. AMD has already stated that general availability for Zen will be in Q1, and Zen might not be the final product launch name/brand when it comes to market. However, there are still plenty of gaps in our knowledge for the hardware, and AMD has promised to reveal this information as we get closer to launch.

We discussed in our earlier piece on the Zen performance metrics given mid-week that it can be hard to interpret any anecdotal benchmark data at this point when there is so much we don’t know (or can’t confirm). With the data in this talk at Hot Chips, we can fill out a lot of information for a direct comparison chart to AMD’s last product and Intel’s current offerings.

CPU uArch Comparison
  AMD Intel
  Zen
8C/16T
2017
Bulldozer
4M / 8T
2010
Skylake
4C / 8T
2015
Broadwell
8C / 16T
2014
L1-I Size 64KB/core 64KB/module 32KB/core 32KB/core
L1-I Assoc 4-way 2-way 8-way 8-way
L1-D Size 32KB/core 16KB/thread 32KB/core 32KB/core
L1-D Assoc 8-way 4-way 8-way 8-way
L2 Size 512KB/core 1MB/thread 256KB/core 256KB/core
L2 Assoc 8-way 16-way 4-way 8-way
L3 Size 2MB/core 1MB/thread >2MB/cire 1.5-3MB/core
L3 Assoc 16-way 64-way 16-way 16/20-way
L3 Type Victim Victim Write-back Write-back
L0 ITLB Entry 8 - - -
L0 ITLB Assoc ? - - -
L1 ITLB Entry 64 72 128 128
L1 ITLB Assoc ? Full 8-way 4-way
L2 ITLB Entry 512 512 1536 1536
L2 ITLB Assoc ? 4-way 12-way 4-way
L1 DTLB Entry 64 32 64 64
L1 DTLB Assoc ? Full 4-way 4-way
L2 DTLB Entry 1536 1024 - -
L2 DTLB Assoc ? 8-way - -
Decode 4 uops/cycle 4 Mops/cycle 5 uops/cycle 4 uops/cycle
uOp Cache Size ? - 1536 1536
uOp Cache Assoc ? - 8-way 8-way
uOp Queue Size ? - 128 64
Dispatch / cycle 6 uops/cycle 4 Mops/cycle 6 uops/cycle 4 uops/cycle
INT Registers 168 160 180 168
FP Registers 160 96 168 168
Retire Queue 192 128 224 192
Retire Rate 8/cycle 4/cycle 8/cycle 4/cycle
Load Queue 72 40 72 72
Store Queue 44 24 56 42
ALU 4 2 4 4
AGU 2 2 2+2 2+2
FMAC 2x128-bit 2x128-bit
2x MMX 128-bit
2x256-bit 2x256-bit

Bulldozer uses AMD-coined macro-ops, or Mops, which are internal fixed length instructions and can account for 3 smaller ops. These AMD Mops are different to Intel's 'macro-ops', which are variable length and different to Intel's 'micro-ops', which are simpler and fixed-length.

Excavator has a number of improvements over Bulldozer, such as a larger L1-D cache and a 768-entry L1 BTB size, however we were never given a full run-down of the core in a similar fashion and no high-end desktop version of Excavator will be made.

This isn’t an exhaustive list of all features (thanks to CPU World, Real World Tech and WikiChip for filling in some blanks) by any means, and doesn’t paint the whole story. For example, on the power side of the equation, AMD is stating that it has the ability to clock gate parts of the core and CCX that are not required to save power, and the L3 runs on its own clock domain shared across the cores. Or the latency to run certain operations, which is critical for workflow if a MUL operation takes 3, 4 or 5 cycles to complete. We have been told that the FPU load is two cycles quicker, which is something. The latency in the caches is also going to feature heavily in performance, and all we are told at this point is that L2 and L3 are lower latency than previous designs.

A number of these features we’ve already seen on Intel x86 CPUs, such as move elimination to reduce power, or the micro-op cache. The micro-op cache is a piece of the puzzle we want to know more about, especially the rate at which we get cache hits for a given workload. Also, the use of new instructions will adjust a number of workloads that rely on them. Some users will lament the lack of true single-instruction AVX-2 support, however I suspect AMD would argue that the die area cost might be excessive at this time. That’s not to say AMD won’t support it in the future – we were told quite clearly that there were a number of features originally listed internally for Zen which didn’t make it, either due to time constraints or a lack of transistors.

We are told that AMD has a clear internal roadmap for CPU microarchitecture design over the next few generations. As long as we don’t stay for so long on 14nm similar to what we did at 28/32nm, with IO updates over the coming years, a competitive clock-for-clock product (even to Broadwell) with good efficiency will be a welcome return.

Simultaneous MultiThreading (SMT) and New Instructions Appendix: Zen Slides from Hot Chips Presentation
Comments Locked

106 Comments

View All Comments

  • Tucker Smith - Thursday, August 25, 2016 - link

    I hear much regarding the potential of Zen in comparison to Intel's HEDT procs, but, given AMD's touting of Zen's scalability, can we glean insight into how it will compete in the $100 range against the i3? People have been clamoring for an unlocked 2c/4t. The excitement over the potential to OC via BCLK on the Skylake was huge, the disappointment when Intel reneged on it even larger.

    The Kaveri-based Athlon x4 860k and the Carrizo Athlon, the 845, were fine chips under $100, but the limited cache and platform options kinda turned me off. A small Zen proc with one of the new, nicer cooling solutions they're offering on a modern mobo sounds incredibly compelling.

    I hear much regarding 8c/16t chips, a lot about potential APUs, but what about that broad middle ground?
  • iranterres - Thursday, August 25, 2016 - link

    Tucker Smith, you made an excellent point. But I think they will launch zen based stuff to compete all across the board
  • fanofanand - Thursday, August 25, 2016 - link

    Zen is the architecture, not necessarily the name of the processor family. They have mentioned the scalability up and down the chain, indicating that they will indeed populate their entire processor line with the Zen architecture. It's impossible to know how well they will scale until they are in independent tester's hands, but I would imagine they have learned quite a bit from their Jaguar cores and should be able to put together a compelling offering in the sub $100 range.
  • Outlander_04 - Thursday, August 25, 2016 - link

    AMD sell APU's with disabled graphics cores already, as well as a range of 2 module APU's with minimal graphics .
    That is the ground you are talking about surely?
  • alpha754293 - Tuesday, August 30, 2016 - link

    It WOULD be interesting to see how they perform in floating point intensive benchmarks compare to their Intel counterparts given the architectural differences between the two company's approaches.
  • tipoo - Wednesday, August 31, 2016 - link

    Last table - >2MB/cire

Log in

Don't have an account? Sign up now