Enterprise Storage Bench - Microsoft SQL UpdateDailyStats

Our next two tests are taken from our own internal infrastructure. We do a lot of statistics tracking at AnandTech - we record traffic data to all articles as well as aggregate traffic for the entire site (including forums) on a daily basis. We also keep track of a running total of traffic for the month. Our first benchmark is a trace of the MS SQL process that does all of the daily and monthly stats processing for the site. We run this process once a day as it puts a fairly high load on our DB server. Then again, we don't have a beefy SSD array in there yet :)

The UpdateDailyStats procedure is mostly reads (3:1 ratio of GB reads to writes) with 431K read operations and 179K write ops. Average queue depth is 4.2 and only 34% of all IOs are issued at a queue depth of 1. The transfer size breakdown is as follows:

AnandTech Enterprise Storage Bench MS SQL UpdateDaily Stats IO Breakdown
IO Size % of Total
8KB 21%
64KB 35%
128KB 35%

Microsoft SQL UpdateDailyStats - Average Data Rate

Our SQL benchmarks are far more compatible with the 910 in terms of IO size, as a result Intel posts the absolute best scores we've seen yet here. The 400GB drive cuts performance in half compared to the 800GB model, but you're still looking at 3x the performance from a 200GB Intel SSD 710. Toshiba's 400GB drive does very well, but Intel's SSD 520 ends up being the fastest 2.5" drive here.

Microsoft SQL UpdateDailyStats - Disk Busy Time

Microsoft SQL UpdateDailyStats - Average Service Time

Enterprise Storage Bench - Oracle Swingbench Enterprise Storage Bench - Microsoft SQL WeeklyMaintenance
Comments Locked

39 Comments

View All Comments

  • Lazarus52980 - Thursday, August 9, 2012 - link

    Wow, fantastic review. Thanks for the good work Anand.
  • quiksilvr - Thursday, August 9, 2012 - link

    Considering the hefty price on these devices, anything short of AES-256 in this day and age is unacceptable (yes I know you can do software encryption, but hardware accelerated is much more secure)
  • prime2515103 - Thursday, August 9, 2012 - link

    I'm confused. Isn't AES-256 the same whether it's done in hardware or software? I thought hardware encryption just performed better (encrypts/decrypts faster).
  • Rick83 - Thursday, August 9, 2012 - link

    AES-256 is no safer than AES-128, according to somewhat recent cryptanalysis on the algorithms.
  • madmilk - Thursday, August 9, 2012 - link

    Hardware acceleration is probably for performance, even AES-NI can't keep up with multiple PCIe SSDs.

    And yeah, AES-256 easier crack than AES-128 now. Not that it matters, with computational complexity still at what, 2^99?

    It's much easier to just kidnap the sysadmin than attack crypto.
  • JPForums - Friday, August 10, 2012 - link

    And yeah, AES-256 easier crack than AES-128 now. Not that it matters, with computational complexity still at what, 2^99?


    Since you didn't mention which attack you are referring to, I'm going out on a limb and assuming you are talking about the related key attacks on the full AES256 / AES192. I don't know of any other attacks that work on all 14 / 12 rounds. You should be aware that while such an attack is widely considered impractical, it isn't even possible under many circumstances. You need some up front data that you can't always get. To keep in relation to this article, I'll limit my scope to on the fly encryption software as it is closely related to the encryption implemented on this device. Several on the fly encryption packages are known to be immune to this kind of attack (I'll single out TrueCrypt as a popular open source package that isn't vulnerable to related key attacks). As long as you are using a properly programmed encryption package for your full disk encryption, AES-256 is still "more secure" than AES-128.

    That said, if you actually calculated the amount of time it takes to brute force AES-128, you'll find that PCs and possibly humanity will have become a long forgotten relic of the past. Of course, processing power changes, but not that quickly. A bigger concern would be attacks that successfully bring the set of keys down to a manageable level. For this issue, diversity is probably more important than bit length, assuming the brute force key set is sufficiently large (I.E. 2^128).
  • Troff - Thursday, August 9, 2012 - link

    I always end up needing to be able to communicate directly with each "drive", which is usually problematic through a raid controller and software raid is invariably faster and in every case I've tried so far much, much faster.
  • Araemo - Thursday, August 9, 2012 - link

    Isn't this necessary for trim anyways? If the OS can talk to each 'drive', trim should work, and performance will stay good, right?
  • web2dot0 - Thursday, August 9, 2012 - link

    Hey Anand,

    Shouldn't FusionIO cards be part of this comparison? It will most likely destroy the 910.
  • happycamperjack - Thursday, August 9, 2012 - link

    http://hothardware.com/printarticle.aspx?articleid...

    Not according to this article. And ioDrive compared in this article is actually about 2x the price of either intel 910 or z-drive r4.

Log in

Don't have an account? Sign up now