Conclusion

A 2P server CPU for less than $100 sounds great, but if that quad-core CPU—the Opteron 4122—consumes more than CPUs that are more powerful, it's probably a bad idea for a server. Since servers run 24/7, electricity and cooling costs contribute almost as much as the CAPEX costs to the TCO.

The Tyan YR190B8228 for example is a very inexpensive server, with a barebone price of only ~$1500 for two servers. Add to that the CPUs, the storage card that accesses the external storage, a few SATA disks, and lots of RAM, and those two servers will cost anywhere between $2500 and $4000. Saving $100 per CPU or $400 per two servers is less than 15% of the CAPEX costs. Saving a few hundred dollars just to waste them later on more electricity and cooling costs just doesn't make sense.

AMD targets those running "Small Business Servers", but even SMEs do not turn off their servers very often. That means that the Opteron 4122 and 4130 only have a place in a cheap workstations that are on eight hours per day. In that case, the 2.6GHz Opteron 4130 ($125) might prove to be a better option than using a low-end Phenom X4. However, we advise against using these CPUs in any 24/7 server.

The Opteron 4170 HE is a much better deal. It is worth investing a few dollars more in getting an HE Opteron instead of a non-HE Opteron 4000. A low-end Xeon E560x series CPU is also viable.

The Opteron 4000 HE consumes very little at idle, which is good for SMB servers as they idle a lot. As a low budget virtualization server, it consumes about 20% more power than the Intel L5630 but saves you almost $400 per CPU. It does this while performing "good enough" in many situations.

Concerning the Opteron 4162 EE, we agree with AMD that this is a good CPU for hosting and cloud environments, but not always. The Opteron 4162 EE makes sense for "budget hosting'", which is a pretty large market. (By "budget hosting" we mean that people accept the possibility of lower availability as they just want to pay as little as possible to get their website on the internet, i.e. Tier 3)

The moment you start looking at "enterprise class hosting" (i.e. Tier 2 and better), where the hosting providers invest in redundancy features to guarantee higher availability, the Xeon L5630 is the CPU to get. The extra capital investment in more expensive CPUs will be noise in the TCO calculation, and the Xeon consumes slightly less while offering up to 40% more CPU power.

Our conclusion is that if you are looking for very cheap server CPUs, the Opteron 4170 HE (2.1GHz) and 4174 (2.3GHz) are very interesting options. Resist the urge to go for the Opteron 4xxx without the HE markings. The moment performance comes into play, the Xeon L5630 is the performance/watt champion, without any doubt. However, there are situations where you are completely power limited and care very little about CPU performance as the number of VMs is limited by memory or disk access I/O. In that case the Opteron 4162 EE offers the lowest power consumption for the lowest price.

Real-World Power Use
Comments Locked

35 Comments

View All Comments

  • mino - Thursday, March 3, 2011 - link

    While the Wh metric is useful for efficiency evaluation, it is pretty much useless for the exact scenario you mention in the conclusion - power-capped server hosting.

    Please add the load-power numbers to the article.
  • ppokorny - Sunday, March 6, 2011 - link

    And if lower results are better, shouldn't the graphs be sorted so the shorter bars are on top?
  • mfenn - Thursday, March 3, 2011 - link

    People actually use the bezels on Dell servers?
  • JohanAnandtech - Saturday, March 5, 2011 - link

    Only for pretty pictures :-)
  • Lord 666 - Thursday, March 3, 2011 - link

    Trying to hold off on the 5600 purchase hoping that the 5700s are almost here.

    Any idea?
  • duploxxx - Friday, March 4, 2011 - link

    ready to hold off until september - oktober?

    I assume you select an Intel server cpu by default as usual by IT?
  • Ben - Thursday, March 3, 2011 - link

    I know that noise level is a bit of a joke for a "real" server, but I've had customers ask me about installing servers in environments that are less than ideal, where the noise level would be a factor in their decision (such as the corner of an office that is occupied).

    I would be interested in seeing noise levels from these units and possibly a future article focused on a couple units that don't sound like a 747 on takeoff.
  • jcandle - Friday, March 4, 2011 - link

    I've experienced this as well. Primarily ones and twos of units as file and workgroup servers where towers would be ideal. Unfortunately, there are not many options when it comes to the storage. Those FC and SAS 16 and 24 bay RAIDs are virtually all designed for rack and put out their share of noise.

    While it doesn't occur often, some companies are requesting racks operate in the same room as workers; sometimes this has to do with large scientific equipment in the room, or other various lab requirements.

    What I would also like to see in addition to noise levels (dB levels at various distances) like Ben request, is the the thermal load (BTU output of each unit). While some manufacturers give it out and it is often estimated, a real world assessment would be nice. Although I understand this would be difficult if you did not receive a dozen or more eval units; perhaps you have trick up your sleeve.
  • bobbozzo - Monday, March 7, 2011 - link

    You can convert Watts to BTUs easily:
    http://www.google.com/search?q=watts+to+btu
  • ZL1Corvette - Thursday, March 3, 2011 - link

    A 95W chip consuming it's full 95W, 24 hours a day, 365 days a year consumes 832.2 kWh a year. At the GE (http://www.csgnetwork.com/elecenergycalcs.html) average of $.1 per kWh, 832.3 kWh costs only $83.22/year. Going from a 95W chip to a 35W chip only saves $51.19/year. So going with the 4170HE instead of the 4122 costs you $74. You save $24.60 a year. You'd need to keep the chip about 3 years for it to pay for itself. You'll only save a fraction of that per year when only considering the chip consumption, which seems like a safe assumption in the spirit of this article where chips are swapped between the same server.

    I did not use the GE calculator, but it gives the same numbers. A TDP is the thermal output, but I think it's safe to assume that that number is a close representation of the power use of the CPU. Power in = Power out. The only power outs I can think of are the thermal power and the "data" power. I'd find it difficult to imagine the "data" power being significant, and I think that the data would be the same no matter which chip you use.

Log in

Don't have an account? Sign up now