Firewire and USB Performance

It is really difficult to put together a simple, repeatable, and consistent test to measure USB and Firewire Performance. Since our goal was to make this a standard part of motherboard testing, we needed a benchmark that was reasonably simple to run and that would also provide consistent results on the same test bed. We finally determined that an external USB 2.0, Firewire 400, and Firewire 800 hard disk might be a sensible way to look at USB and Firewire throughput.

Our first efforts at testing with an IDE or SATA drive as the "server" yielded very inconsistent results, since Windows XP sets up cache schemes to improve performance. Finally, we decided to try a RAM disk as our "server", since memory removed almost all overhead from the serving end. We also managed to turn off disk caching on the USB and Firewire side by setting up the drives for "quick disconnect" and our results were then consistent over many test runs.

We used just 1GB of fast 2-2-2 system memory set up as a 450MB RAM disk and 550MB of system memory. Our stock file was the SPECviewPerf install file, which is 432,533,504 bytes. After copying this file to our RAM disk, we calculated the time for writing from the RAM disk to our external USB 2.0 or Firewire 400 or Firewire 800 drive using a Windows timing program written for AnandTech by our own Jason Clark. The copy times in seconds were then converted into Megabits per second (Mb) to provide a convenient means of comparing throughput. Higher Rates therefore mean better performance.

Firewire & USB Performance

Possibly the most striking finding in our Firewire and USB throughput tests is the performance of a hard drive connected to Firewire 800. If you wonder why Firewire 800 matters, just look at the data. Our benchmarks show Firewire 800 at 40 to 55% faster than a drive connected to the more common Firewire 400, and about 16% faster than USB 2.0. The Firewire 800 drive even approaches performance of the IDE drive on the NVIDIA controller. While all of the boards in this roundup feature Firewire 400 controllers, Gigabyte and Asus feature Firewire 800 (1394b) on several of their top motherboards.

Our test is just one of many throughput tests, but in this benchmark, it is clear that the VIA Firewire 400 and Agere 400 are faster than TI's 1394a chip.

All of the SATA solutions also slightly outperform IDE in our timed copy from RAM disk. We did not have 3Gb/s drives to test with the onboard NVIDIA SATA 2, but it is still interesting that throughput with a SATA 1 drive is still a bit faster on the SATA 2 controllers than on SATA 1. For more information on SATA 2 3Gb/s performance, please check a recent review under the Storage tab at the top of the page.

Disk Controller Performance Ethernet Performance
Comments Locked

75 Comments

View All Comments

  • tribbleva - Tuesday, December 20, 2005 - link

    Every single one of these MBs has a fan on the NB... where are the passively cooled mobos? The last thing I want is one or TWO more tiny fans just on the mobo to worry about failing...
  • Zebo - Friday, July 22, 2005 - link

    "someof you take Anandtech's word as the word of GOD"

    It's as close as you can get without dying.:)
  • Zebo - Friday, July 22, 2005 - link

    Viper - You should come inside the forums for specfic help..
  • dg3274 - Saturday, July 16, 2005 - link

    The article states that the Abit board has a problem with 1:1 overclocking. I disagree. I think the problem is that it does not provide enough ram voltage to run the RAM at high 1:1 FSB. 2.8 volts is not enough to run ANY ram much higher than 280 or so FSB.
  • Viper4185 - Thursday, July 14, 2005 - link

    No one wants to help me with my n00b questions :(
  • Marcel - Tuesday, July 12, 2005 - link

    #67 I must be a little a slow …

    In the test “Maximun CPU Clock ( Lower Multiplier )”

    For Chaintec, Abit, etc you use the multiplier in “11”, and only for Epox and DFI you use the multiplier in “9”, then you show a diagram with nothing more than the fsb.
    http://images.anandtech.com/graphs/nf4%20ultra%20r...

    The first question is WHY ?? there is no explanation for use different multiplier in the review. Not some guys, but ALL ones have better result in chaintec and abit with a lower multiplier.
  • TheGlassman - Monday, July 11, 2005 - link

    Thanks Wesley, I did find you had checked HTT, and as I stated in my last post I don't understand what the problem was. But the deeper I looked into the review, the better job you seemed to have done, so sorry if I impied you didn't try very hard.
    DFI has a dual core (beta) bios available, dated 6-23-05
    Epox has a dual core (release) bios available, dated 6-29-05
    These were not used in testing.
  • Wesley Fink - Monday, July 11, 2005 - link

    #59 and #60 - One of the first articles I did a couple of years ago about Athlon 64 was how to overclock by manipulating HTT frequencies. I ALWAYS test manual HTT dividers I know should work for certain 1:1 memory clocks as well as Auto HTT if it is an available option.

    #58 - I was very CLEAR in the review that I tested with the BIOS that would allow the X2 A64 to work. We did check each board with an X2. That is the ONLY reason we tested and used very recent Beta BIOS'. Also there are 2 other very recent Chaintech reviews at other websites who had test results almost equal to what I found on the Chaintech, so there are at least 2 other Chaintechs loose with less than stirring overclocking. In the end, as I stated in the review, the Chaintech is a decent board, but at about the same price as the Epox, with poorer overclocking results, it was hard to give it an Editor's Choice this time around. The results found in this roundup should remove anyone's concern that we get cherry boards from manufacturers. I am a good overclocker, and very experienced in air overclocking and memory overclocking. What I got from these boards on air is all they could do with the TCCD memory that is all but standard test memory for motherboards these days. The capabilities of the memory we used is also well known and I tweaked for TCCD if settings were available if the board was not doing well at stock memory settings and our normal test timings.

    I am really pleased some of you experienced better performance than I did with the Chaintech and Abit boards, but I can only report what I actually found in my tests. I don't think you come to AnandTech for a survey of what other websites or Forums found, because I find overclockers are notorious at exagerrating what they can reach with overclocks. We try to provide a consisten test environment for overclocking that will give repeatable overclocking results. Results, of course, always vary board to board, but having said that, OC results are usually pretty consistent on better boards from sample to sample.
  • lefenzy - Saturday, July 9, 2005 - link

    Sorry, wrong link. that one was for the SLI version.

    http://www.foxconnchannel.com/productsDownload_mot...
  • lefenzy - Saturday, July 9, 2005 - link

    Foxconn has a BIOS release that allow for multiplier adjustment.

    http://www.foxconnchannel.com/productsDownload_mot...

Log in

Don't have an account? Sign up now