Final Words

Overall the M500DC is a sensible addition to Micron's enterprise SSD lineup. It fills the gap between the consumer M500 and the P400m by providing a solution that is affordable yet has the feature set and meets the performance requirements of enterprise customers. The performance is actually far better than I expected from an entry-level drive, although I must admit that I was surprised (and perhaps a little terrified too) when I noticed that Micron sets aside up to 42% (!) of the NAND for over-provisioning and RAIN. While this isn't anything new for Micron (45% of the NAND in the P400m is inaccessible to the user), it's certainly a lot given that most of the competitors are only setting aside 27% or 12% of the NAND.

I think this is also where Micron's strength culminates. While using every possible bit in the NAND is crucial for the fab-less competitors to cut costs, Micron can use a bit more NAND for over-provisioning while remaining competitive in price as the NAND is so much cheaper for them. That also helps with the R&D costs because unlike Intel and many others, Micron isn't designing their own controller but relies on Marvell for the silicon.

  Micron M500DC Intel SSD DC S3500
120GB $220 $159
240GB $366 $275
480GB $609 $543
800GB $1006 $886

Pricing in the enterprise space behaves a bit differently than in the client world. As drives are generally purchased in bulk, Micron couldn't provide any specific MSRPs for the drives, hence I had to rely on one of their resellers. The above table uses Arrow's pricing to give some idea of the typical cost. The Intel S3500 prices are Intel's bulk prices listed on their site but I'd like to emphasize that the prices here may not be very accurate and potential buyers should consult their distributors before making any purchasing decisions.

Update: Micron just sent us a note that one of their other resellers, CDW, sells the M500DC at noticeably lower prices, so I've updated the pricing table with the new prices. CDW also carries the S3500 and I've included its retail price in the table as well. Still, customers buying straight from Micron should expect even lower pricing as these single unit prices.

The M500DC carries a small premium over the S3500, but then it often performs substantially better as well. Most of the difference is due to the amount of NAND Micron sets aside for over-provisioning and NAND because that NAND is still a part of the bill of materials. If we compare the price against the total amount of NAND onboard, the pricing of the M500DC doesn't look that bad ($0.79/GiB vs $1.06/GiB for the S3500 at 480GB). I'm still not convinced that setting aside that much NAND is the best solution but it's understandable when seeking maximum performance and reliability for enterprise workloads. As the NAND lithographies get smaller, the increasing over-provisioning is the trade off that has to be made in order to avoid impacts on performance and endurance.

Ultimately, there is no one drive that is the best in all aspects and it's up to one's workload to find out the most suitable drive. I believe the M500DC provides a well balanced solution for the hyperscale customers that require consistent performance but are not looking for extreme endurance. The hyperscale market is quickly growing and will continue to do so and more affordable enterprise SSDs with regular MLC will continue to aid that growth.

Random & Sequential Performance
Comments Locked

37 Comments

View All Comments

  • Samus - Wednesday, April 23, 2014 - link

    I think the price is ridiculous, nearly twice as expensive as the reliable Intel S3500 and almost as expensive as the uber-superior S3700. Makes no sense.
  • ZeDestructor - Wednesday, April 23, 2014 - link

    Lot's of lack of time in some sections...

    Granted, new benchmarks, but IMO that should be split off to a seperate article and the entire thing delayed for publishing to get the tests done. Otherwise, excellent revewing as always.
  • okashira - Wednesday, April 23, 2014 - link

    If you want a drive with good speed , low price and amazing endurance, just pick up a used Samsung 830 for cheap.
    People have tested them to 25,000 cycles. That's 10+ PB for a 512GB drive, for just $300 or less. And I suspect their data retention is superior as well.
  • Solid State Brain - Wednesday, April 23, 2014 - link

    Thing is, while older consumer drives with quality MLC NAND might appear to have an exceptional P/E rating until failure (which occurs when wear is so high that the data retention gets so short the uncorrectable bit error rate so extreme that the controller can't keep the drive in a working state anymore, not even when powered), there's no way their manufacturer will guarantee such usage.

    On a related note, all consumer Samsung 840 drives (with TLC memory) I've seen pushed through in stress endurance testings posted on the internet have reached at least ~3200-3500 P/E cycles until failure and didn't start show any SMART error before 2800-2900 cycles, which means that the approximate ~1800-2000 P/E rating (for the stated TBW endurance with sequential workloads) for TLC-NAND datacenter enterprise Samsung SSDs drives (@ a 3 months data retention) makes much sense. But again, no way Samsung will offer any guarantee for such usage with consumer or workstation drives. they will just tell you they are tested for consumer/light workloads.

    Real endurance figures for NAND memory in the SSD market has to be one of the industry's best kept secrets.
  • AnnonymousCoward - Friday, April 25, 2014 - link

    Ever think of doing a real world test, measuring "time"? Everyone should know synthetic benchmarks for hard drives are meaningless. Why don't you do a roundup of drives and compare program load time, file copy time, boot time, and encoding time. Am I a freakin genius to think of this?
  • MrPoletski - Saturday, April 26, 2014 - link

    Why does every single performance consistency graph say 4KB random write QD 32?
  • markoshark - Sunday, April 27, 2014 - link

    I'm wondering if any testing is done with a 30/70 read/write ratio - Most i've seen is 70% read.
    With enterprise drives, they are often rebadged and used in SANs - Would be interesting to see how they compare in write-intensive enviroments (VDI)

Log in

Don't have an account? Sign up now