Real World CPU Benchmarks

Rendering – Adobe After Effects CS6: link

Published by Adobe, After Effects is a digital motion graphics, visual effects and compositing software package used in the post-production process of filmmaking and television production. For our benchmark we downloaded a common scene in use on the AE forums for benchmarks and placed it under our own circumstances for a repeatable benchmark. We generate 152 frames of the scene and present the time to do so based purely on CPU calculations.

Adobe After Effects CS6: 152 Frames

With AE6 being an optimized software package, more cores and threads rather than more MHz makes sense in our test.

Compression – WinRAR 5.0.1: link

Our WinRAR test from 2013 is updated to the latest version of WinRAR at the start of 2014. We compress a set of 2867 files across 320 folders totaling 1.52 GB in size – 95% of these files are small typical website files, and the rest (90% of the size) are small 30 second 720p videos.

WinRAR 5.01

Due to the variable nature of the WinRAR test, our Xeons come out on top but it is hard to choose between them.

Image Manipulation – FastStone Image Viewer 4.9: link

Similarly to WinRAR, the FastStone test us updated for 2014 to the latest version. FastStone is the program I use to perform quick or bulk actions on images, such as resizing, adjusting for color and cropping. In our test we take a series of 170 images in various sizes and formats and convert them all into 640x480 .gif files, maintaining the aspect ratio. FastStone does not use multithreading for this test, and thus single threaded performance is often the winner.

FastStone Image Viewer 4.9

FastStone is a single threaded application where IPC and MHz matter.  As a result, the newest architectures and platforms do better here than the Ivy Bridge-E based Xeons.

Video Conversion – Xilisoft Video Converter 7: link

The XVC test I normally do is updated to the full version of the software, and this time a different test as well. Here we take two different videos: a double UHD (3840x4320) clip of 10 minutes and a 640x266 DVD rip of a 2h20 film and convert both to iPod suitable formats. The reasoning here is simple – when frames are small enough to fit into memory, the algorithm has more chance to apply work between threads and process the video quicker. Results shown are in seconds and time taken to encode.

Xilisoft VC 7.5 Film CPU Only

When going through lots of small frames, our XVC test working on one file prefers cores and threads over MHz.

Xilisoft VC 7.5 2x4K

When the workload has some room to grow with larger frames, segments of each frame can be dispatched to cores more approprately and the 12-core Xeon comes out on top.

Video Conversion – Handbrake v0.9.9: link

Handbrake is a media conversion tool that was initially designed to help DVD ISOs and Video CDs into more common video formats. The principle today is still the same, primarily as an output for H.264 + AAC/MP3 audio within an MKV container. In our test we use the same videos as in the Xilisoft test, and results are given in frames per second.

HandBrake v0.9.9 Film

Similar to the XVC test, when the frames are small the software has to fight against thread dispatch of smaller pieces that get in the way of opening up the trottle.

HandBrake v0.9.9 2x4K

Move to larger frames again and the Xeons can use their full force.  Cores over MHz wins here.

Rendering – PovRay 3.7: link

The Persistence of Vision RayTracer, or PovRay, is a freeware package for as the name suggests, ray tracing. It is a pure renderer, rather than modeling software, but the latest beta version contains a handy benchmark for stressing all processing threads on a platform. We have been using this test in motherboard reviews to test memory stability at various CPU speeds to good effect – if it passes the test, the IMC in the CPU is stable for a given CPU speed. As a CPU test, it runs for approximately 2-3 minutes on high end platforms.

PovRay 3.7 beta

PovRay becomes an embarrassingly parallel benchmark where cores x frequency come out on top.  This pattern of results is a common sight in our synthetic testing.

Mac Pro Xeon Options, Test Setup, Power Consumption Scientific and Synthetic Benchmarks: 2D to 3D, Emulation, Encryption
Comments Locked

71 Comments

View All Comments

  • XZerg - Monday, March 17, 2014 - link

    this bench also shows that the haswell had almost no CPU related performance benefits over IVB (if not slowed down performance) looking at 3770k vs 4770k and that haswell ups the gpu performance only.

    i really question intel's skuing of haswell...
  • Nintendo Maniac 64 - Monday, March 17, 2014 - link

    Emulation?
  • BMNify - Monday, March 17, 2014 - link

    its a shame they didn't do a UHD x264 encode here as that would have shown a haswell AVX2 improvement (something like 90% over AVX), and why people will have to wait for the xeons to catch up to at least AVX2 if not AVX3.1
  • psyq321 - Wednesday, March 19, 2014 - link

    There is no "90% speedup over AVX" between HSW and IVB architectures.

    AVX (v1) is floating point only and thus was useless for x264. For floating point workloads you would be very lucky to get 10% improvement by jumping to AVX2. The only difference between AVX and AVX2 for floating point is the FMA instruction and gather, but gather is done in microcode for Haswell, so it is not actually much faster than manually gathering data.

    Now, x264 AVX2 is a big improvement because it is an integer workload, and with AVX (v1) you could not do that. So x264 is jumping from SSE4.x to AVX2, which is a huge jump and it allows much more efficient processing.

    For integer workloads that can be optimized so that you load and process eight 32-bit values at once, AVX2 Xeon EPs/EXs will be a big thing. Unfortunately, this is not so easy to do for a general-purpose algorithms. x264 team did the great job, but I doubt you will be using 14 core single Haswell EP (or 28 core dual CPU) for H.264 transcoding. This job can be done probably much more efficient with dedicated accelerators.

    As for the scientific applications, they already benefit from AVX v1 for floating point workloads. AVX2 in Haswell is just a stop-gap as the gather is microcoded, but getting code ready for hardware gather in the future uArch is definitely a good way to go.

    Finally, when Skylake arrives with AVX 3.1, this will be the next big jump after AVX (v1) for scientific / floating point use cases.
  • Kevin G - Monday, March 17, 2014 - link

    Shouldn't both the Xeon E5-2687W v2 support 384 GB of memory? 4 channels * 3 slots per channel * 32 GB DIMM per slot? (Presumably it could be twice that using eight rank 64 GB DIMMs but I'm not sure if Intel has validated them on the 6 and 10 core dies.) Registered memory has to be used for the E6-2687w v2 to get to 256 GB, just is the chip not capable of running a third slots per channel? Seems like a weird handicap. I can only imagine this being more of a design guideline rule than anything explicit. The 150W CPU's are workstation focused which tend to only have 8 slots maximum.

    Also a bit weird is the inclusion of the E5-2400 series on the first page's table. While they use the same die, they use a different socket (LGA 1356) with triple memory support and only 24 PCI-e lanes. With the smaller physical area and generally lower TDP's, they're aimed squarely the blade server market. Socket LGA 2011 is far more popular in the workstation and 1U and up servers.
  • jchernia - Monday, March 17, 2014 - link

    A 12 core chip is a server chip - the workstation/PC benchmarks are interesting, but the really interesting benchmarks would be on the server side.
  • Ian Cutress - Monday, March 17, 2014 - link

    Johan covered the server side in his article - I link to it many times in the review:
    http://www.anandtech.com/show/7285/intel-xeon-e5-2...
  • BMNify - Monday, March 17, 2014 - link

    a mass of other's might argue a 12 core/24 thread chip or better is a potential "real-time" UHD x264 encoding machine , its just out of most encoders budgets, so NO SALE....
  • Nintendo Maniac 64 - Monday, March 17, 2014 - link

    Uh, where's the test set up for the 7850K?
  • Nintendo Maniac 64 - Monday, March 17, 2014 - link

    Also I believe I found a typo:

    "Haswell provided a significant post to emulator performance"

    Shouldn't this say 'boost' rather than 'post'?

Log in

Don't have an account? Sign up now