Testing Platform

For our Kaveri testing AMD sent us two APUs – the top 95W A10-7850K SKU and the configurable TDP version of the A8-7600 APU, the latter of which can be set at 45W or 65W through the BIOS. The A8-7600 was tested in both power configurations, ultimately the difference between them both being only a few hundred MHz. The 65W configuration is only 200 MHz off the A10-7700K base frequency, and incidentally they both turbo to the same frequency of 3.8GHz.

Kaveri will be the first APU put through the mangle in terms of my new 2014 benchmarking suite, focusing on more compute tasks, video conversion in different software, and more real world scenarios geared for the prosumer.

We must thank the following companies for their contribution to the test beds:

Our test setup for AMD is as follows:

AMD APU TestBed
  SKU Cores CPU /
Turbo
DRAM
MHz
Power IGP SPs GPU
MHz
Kaveri APUs A10-7850K 2M/4T 3.7 GHz
4.0 GHz
2133 95W R7 512 720 MHz
A8-7600 2M/4T 3.3 GHz
3.8 GHz
2133 65W R7 384 720 MHz
A8-7600 2M/4T 3.1 GHz
3.3 GHz
2133 45W R7 384 720 MHz
Richland APUs A10-6800K 2M/4T 4.1 GHz
4.4 GHz
2133 100W 8670D 384 844 MHz
A10-6700T 2M/4T 2.5 GHz
3.5 GHz
1866 45W 8650D 384 720 MHz
A8-6500T 2M/4T 2.1 GHz
3.1 GHz
1866 45W 8550D 256 720 MHz
Trinity APUs A10-5800K 2M/4T 3.8 GHz
4.2 GHz
2133 100W 7660D 384 800 MHz
A8-5500 2M/4T 3.2 GHz
3.7 GHz
1866 65W 7560D 256 760 MHz
Memory AMD Radeon 2 x 8 GB DDR3-2133 10-11-11 1.65V
G.Skill RipjawsX 4 x 4 GB DDR3-2133 9-11-11 1.65V
G.Skill RipjawsZ 4 x 4 GB DDR3-1866 8-9-9 1.65V
Motherboards ASRock FM2A88X Extreme6+
ASRock FM2A88X-ITX+
Power Supply OCZ 1250W ZX Series
Storage OCZ 256GB Vertex 3 SSDs
Operating System Windows 7 64-bit SP1 with Core Parking updates
Video Drivers Graphics Driver Build 13.300 RC2 for Radeon R7
Catalyst 13.12 for all others

Unfortunately we were not able to source a 65W Richland part in time, however a midrange 65W Trinity part was on hand. The important thing to note is that within each power bracket, both the CPU frequencies and the supported memory changes depending on the architecture and the binning process AMD uses. The benchmarks in this review are run at the processors' maximum supported frequency, rather than any AMD Memory Profiles which the processor can also support via overclocking. This has implications in conjunction with the IPC or MHz difference.

For this review we also took a few Intel processors of varying TDPs:

Intel TestBed
  SKU Cores CPU /
Turbo
DRAM
MHz
Power IGP SPs GPU
MHz
Sandy Bridge i5-2500K 4C/4T 3.3 GHz
3.7 GHz
1600 95W HD 3000 12 850
Ivy Bridge i3-3225 2C/4T 3.3 GHz 1600 55W HD 4000 16 550
i7-3770K 4C/8T 3.5 GHz
3.9 GHz
1600 77W HD 4000 16 550
Haswell i3-4330 2C/4T 3.5 GHz 1600 54W HD 4600 20  
i7-4770K 4C/8T 3.5 GHz
3.9 GHz
1600 84W HD 4600 20  
i7-4770R
+ Iris Pro
4C/8T 3.2 GHz
3.9 GHz
1600 65W HD 5200 40  
Memory ADATA XPG 2 x 8 GB DDR3L-1600 9-11-9 1.35V
Motherboards ASUS Z87 Gryphon
Power Supply OCZ 1250W ZX Series
Storage OCZ 256GB Vertex 3 SSDs
Operating System Windows 7 64-bit SP1 with Core Parking updates
Video Drivers 15.28.20.64.3347 for HD 3000
15.33.8.64.3345 for HD 4000+4600

Unfortunately our stock of i5 and i3 processors is actually rather limited – Intel prefers to source the i7s when we review those platforms, but I was able to use a personal i3-3225 from my NAS and we sourced the Haswell i3 as well. Given that Ganesh has the BRIX Pro in for review, I asked him to run as many benchmarks from our gaming suite as I could, to see how well Intel's Haswell eDRAM (Crystalwell) equipped processors stand up to Kaveri’s GCN mêlée.

For reference we also benchmarked the only mid-range GPU to hand - a HD 6750 while connected to the i7-4770K.

Overclocking and Underclocking the A10-7850K

As part of the final testing for this review we did some basic overclocking on the A10-7850K processor. Despite our processor being an engineering sample, we would assume that it is as close/identical to the retail silicon as you can get, given that this is meant to be a review on which people make purchasing decisions.

Our A10-7850K CPU starts out with a peak voltage under load of 1.24 volts when running OCCT. From this point we clocked back to 3.5 GHz and 1.100 volts, with a full-on CPU load line calibration and adjusted turbo mode to equal the base clock. Our standard overclocking test applies – OCCT for five minutes, PovRay, and new for 2014, a run of LuxMark. At our settings, we test the system for stability by running these tests. If the system fails, the CPU voltage is raised 0.025 volts until the system is stable during testing. When stable, the system multiplier is then raised and our testing moves on to the new MHz range.

Our results are as follows:

There was an unexpected jump in the voltage required to move from 3.5 GHz to 3.6 GHz (likely hitting the limits of what we can easily attain on this process). The system would not remain stable until 1.225 volts as set in the BIOS.

We also did the power tests, measuring the power draw at the wall as the delta between idle and OCCT load:

As expected, raising the voltage has a significant effect on the power consumption of the processor. One thing I should point out is that even at stock, the power delivery VRMs were getting very hot to touch – so much in fact that the system generated significant errors without an active fan on them. This got worse as the system was overclocked. I am not sure if this is an effect of the platform or the motherboard, but it will be something to inspect in our motherboard reviews going forward.

The Kaveri Socket and Chipset Line Up: Today and Q1, No Plans for FX or Server(?) CPU Performance
Comments Locked

380 Comments

View All Comments

  • SofS - Wednesday, January 22, 2014 - link

    Following your links and looking around I found:
    http://www.tomshardware.com/reviews/core-memory-sc...

    It links to previous similar articles concerning the Phenon II and the i7 of the time (975). Seems that indeed the C2Q does not benefit much from memory improvements compared to the other two, but there is a difference. This and all of those three cases are relevant since all three models were very popular. Also, I remember choosing the on time smaller modules for my first kit whit this particular system since they were the only reasonable DDR3 modules at 1600 within reach, albeit I never managed to stabilize it at CL6. On the other hand the latter I upgraded with got CL6 from XMP since the beginning while being larger. Given that memory is very cheap compared to the whole system plus the cost of repurchasing non portable software then this (maybe also a new GPU) might just be the final push needed to wait for the next generation native DDR4 systems for many.
  • fokka - Tuesday, January 14, 2014 - link

    i understand your sentiment, but then again, about every modern mainstream cpu should destroy a c2d and even quad in raw performance. and you even get relatively capable integrated graphics included in the package, so about everyone even moderately interested in computing performance and efficiency "should bite the bullet" if he's got a couple hundred bucks on the side.
  • just4U - Wednesday, January 15, 2014 - link

    and that's the problem.. their not. "It's good enough" Numbers are.. just that numbers. We hit a wall in 2008 (or there abouts..) and while performance kept increasing it's been in smaller increments. Over the span of several generations that really can add up but not the way it once did.

    It used to be you'd get on a old system and it would be like pulling teeth because the differences were very noticeable and in some cases they still are.. but for the most part? Not so much.. not for normal/casual usage. There is a ceiling .. Athlon X2s P4s? No.. you'll notice it.. Quad 8x Core2? hmmm.. How about a socket 1366 cpu or the 1156 stuff? Or the PIIs from AMD. Those people should upgrade? Certainly if their board dies and they can't replace.. but otherwise not so much.
  • just4U - Wednesday, January 15, 2014 - link

    That should have read Quad 8x series Core2s.. anyway these days It seems like we do a lot more change out video, add in ssd, increase ram, rather then build systems from the ground up as systems can stick around longer and still be quite viable. Yes/no?
  • tcube - Thursday, January 16, 2014 - link

    Totaly agree. We're led to believe that we need to upgrade every 2 years or so... yet a great many are still using old cpu's even dual cores with new software and os without a care in the world. Because there is no noticeable improvement in cpu usage. Cpu power became irrelevant after C2Q nothing beyond that power is justifiable in normal home or office usage. Certainly certain professional users will want a cheap workstation and will buy into the highend pc market likewise extreme gamers or just for bragging rights. But thinking that for anything from browsing to medium photoshop usage or any moderate videoediting software use will REQUIRE anything past a quadcore like lowend i5's or this kaveri is plain false. You will however notice the lack of a powerful gpu when gaming or doing other gpu intensive tasks... so amd has a clear winner here.

    I do agree it's not suited for heavy x86 work... but honestly... most software stacks that previously relied heavily on cpu are moving to opencl to get a massive boost from the gpu... photoshop being just one of many... so yeah the powerful gpu on kaveri is a good incentive to buy, the x86 performance is better then richland which is sufficient for me(as i currently do use a richland cpu) so...
  • Syllabub - Friday, January 17, 2014 - link

    I am not going to try and pick a winner but I follow your line of reasoning. I have a system with a e6750 C2D and Nvidia 9600 that still gets the job done just fine. It might be described as a single purpose type of system meaning I ask it to run one or possibly two programs at the same time. What I think is pretty wild is that when I put it together originally I probably sank something close to $250 into the CPU and GPU purchase while today I potentially get similar performance for under $130 or so. The hard part is buying today in a manner that preserves a level of performance equivalent to the old system; always feel the tug to bump up the performance ladder even if I don't really need it.
  • Flunk - Thursday, January 16, 2014 - link

    That doesn't really make sense unless you also include equivalently-priced current Intel processors. People may be moving on from Core 2s but they have the opportunity to buy anything on the market right now, not just AMD chips.
  • PPB - Tuesday, January 14, 2014 - link

    Adding a $350 CPU plus $50 GPU to a iGP gaming comparison = Anandtech keeping it classy.
  • MrSpadge - Tuesday, January 14, 2014 - link

    You do realize they're not recommending this in any way, just showing the full potential of a low-end discrete GPU which wouldn't be bottlenecked by any modern 3+ core CPU?
  • Homeles - Tuesday, January 14, 2014 - link

    PPB being an ignorant critic, as usual.

    "For reference we also benchmarked the only mid-range GPU to hand - a HD 6750 while connected to the i7-4770K."

Log in

Don't have an account? Sign up now