Final Words

Ultimately there is one crucial thing that the SSD 530 provides over the SSD 520: price. The SSD 520 has been rather expensive and it hasn't really been able to compete, in price or performance, with the newer SSDs with smaller lithography NAND. As a result, I haven't been able to recommend the SSD 520 for ages as it simply hasn't provided any value for the extra cost. With the SSD 530 Intel's pricing is more reasonable and closer to other high-end SSDs. In fact, Intel's pricing is very competitive if you compare the SSD 530 to OCZ Vector 150 or SanDisk Extreme II, although those two also outperform the SSD 530 by a fairly big margin.

NewEgg Price Comparison (11/12/2013)
  120/128GB 180GB 240/256GB 480/512GB
Intel SSD 530 $120 $170 $200 N/A ($419)
Intel SSD 520 N/A $195 $250 N/A
Intel SSD 335 N/A $155 $180 N/A
OCZ Vector 150 $135 N/A $240 $490
OCZ Vertex 450 $115 N/A $220 $460
Samsung SSD 840 EVO $100 N/A $175 $340
Samsung SSD 840 Pro $150 N/A $250 $570
Crucial M500 $120 N/A $150 $310
SanDisk Extreme II $150 N/A $230 $460
Seagate SSD 600 $110 N/A $150 $380

We aren't able to find the 480GB model in stock anywhere right now (at least, not at any of the major online resellers), but it's interesting to note that Intel's ARK page shows a bulk price of just $419; by comparison, the 240GB has a bulk price of $219, so if Intel can truly sell the 480GB for close to $400 it's at lest worth a look. Still, the competition is fierce, with the M500 and 840 EVO getting closer to $300 than $400 for 480-512GB capacities.

Other than price, power consumption is the only other major improvement in the SSD 530. Performance is mostly similar to the SSD 520, although I don't think this surprises anyone. The SF-2281 is well over two years old now, so there are no tricks left to increase performance.

I'm still of the opinion that Intel should offer a consumer orientated drive with its own SATA 6Gbps controller (i.e. the one used in the DC S3500/S3700). However, I do understand that it may not be cost effective, especially as the controller was designed for enterprise to begin with, making it not suitable for the consumer market with slimmer profits. It will be interesting to see what Intel's approach will be with SATA Express as it gives Intel a new chance to design something in-house. With SATA 6Gbps Intel was very late to the game, which forced them to use third party controllers (first Marvell and then SandForce). With SATA 3Gbps, on the other hand, Intel was one of the first players to come up with a good controller and firmware (the X25-M series), so I certainly hope that we will see something similar this time around.

Power Consumption
Comments Locked

60 Comments

View All Comments

  • HisDivineOrder - Saturday, November 16, 2013 - link

    Remember when Sandforce used to be desired? That was a long, long time ago. Now they stink of bad firmwares and ugly compromise.
  • jwcalla - Saturday, November 16, 2013 - link

    I'm surprised we haven't seen a new gen from them yet. I wonder if they're even working on anything.
  • purerice - Sunday, November 17, 2013 - link

    True. It is a better problem to have than great firmware with bad hardware though. I mean, if they have the desire, they can fix existing drives. If they don't, they'll just lose customers, end of story.
  • GuizmoPhil - Sunday, November 17, 2013 - link

    The mITX ASUS Maximus VI Impact also got an M2 slot.
  • g00ey - Sunday, November 17, 2013 - link

    Sorry but just I don't believe in PCIe as a viable interface for SSD storage. If SATA 6 Gbps turns out to be a bottleneck then make drives that use two SATA channels or more. Or even switch to SAS 12Gbbs which was introduced back in 2011. Not many changes will be needed when switching to SAS since SAS is pin-compatible with SATA and a SAS controller can run SATA drives. The only noticeable difference is that SAS is more stable and cable lengths up to 10 meters (33 feet) are possible whereas only 1 meter (3.3 feet) works for SATA. I also like the SFF-8087/8088 connectors which house 4 SAS/SATA channels in one connector, there is both an internal version (SFF-8087) and an external version (SFF-8088) of this connector, just like SATA vs eSATA.

    The major advantages of SAS/SATA over PCIe is spelled RAID and hot-swap so it only makes sense to implement PCIe based storage in ultra-portable applications and applications with extremely high demands on low-latency.
  • tygrus - Sunday, November 17, 2013 - link

    How do the SSD's perform with a simultaneous mix of Read/Write ? eg. 70/30 mix of random R/W with Q=32 or simulate tasks that stream read-modify-write.
  • emvonline - Sunday, November 17, 2013 - link

    Couple items: The real difference with the 530 is low power options from Sandforce controller and potentially lower cost 20nm NAND. If it isnt cheaper than 520, don't buy it.

    Intel chose 2281 controller for its consumers SSDs over its internal controller. Why would you recommend that Intel do a consumer SSD with its internal controller? Intels 3500 internal controller is purchased from and fab'd by another company anyway. Do you think the performance it much better than Sandforce 2281 B2?
  • 'nar - Monday, November 18, 2013 - link

    I must be dense, because I still don't get why you criticize Sandforce so much about incompressible data. I don't see a need to put incompressible data on an SSD in the first place, so the argument is meaningless.

    For cost per GB of storage, most people still do not want SSD's holding 500GB of data. Why do they have over 500GB? Pictures, music, movies, ie incompressible data. Therefore, that is stored on a much more cost-effective hard drive and hence, irrelevant here.

    I don't see a performance advantage either. What do you do with music and movies? Play them. How much speed does that require? 12MBps? Hard drives are fine for media servers. Maybe you want to copy to a flash drive, but it will be limited itself to about 150MBps for good USB 3 drives anyway. And if you are editing video often then you are likely going over that 20GB per day of writes, so you should put that on an enterprise scratch disk anyway.

    So, you ask if Sandforce will "fix" this problem? What problem? It is the fundamental design feature they have. It is what makes them unique, and in "normal" system it is quite useful, reviewers looking for bigger sledge hammers not withstanding. That's like saying the president is not so bad, but maybe if he weren't so black.

    You can break anything. These are not build to be indestructible, nobody would be able to afford them if they were. These are built for common use, and I do not see hammering incompressible data in these benchmarks a common use.
  • Kristian Vättö - Tuesday, November 19, 2013 - link

    If you're using software based encryption, it's quite a big deal because all your data will be incompressible. For other SSDs it's the one and same whether the data is compressible or not, but for SandForce based SSDs it's not, so it's a thing worth mentioning. What would be the point of reviews in the first place if we couldn't point out differences and potential design flaws?
  • 'nar - Thursday, November 21, 2013 - link

    noted. That's it. Not half of all benchmarks. I don't use software encryption for most of my data.

Log in

Don't have an account? Sign up now