Power Consumption

Before proceeding to the business end of the review, let us take a look at some power consumption numbers. The G.Skill RAM was set to DDR3 1600 during the measurements. We measured the average power drawn at the wall under different conditions. In the table below, the Blu-ray movie from the optical disk was played using CyberLink PowerDVD 13. The ISOs were mounted using Windows 8's in-built mounting tool. Prime95 v27.9 and Furmark v1.10.6 were used for stress testing. Blu-ray ISO ripping was done using AnyDVD HD v7.2. The Prime95 + Furmark benchmark was run for 1 hour before any measurements were taken. Power consumption numbers for local file playback using various renderer / decode combinations has already been covered in a previous section. The testbed was connected to a Wi-Fi network (and the GbE port was left unconnected) throughout the evaluation. In all cases, a wireless keyboard and mouse were connected to the testbed.

Haswell HTPC Testbed Power Consumption
   
Idle 25.94 W
Sleep 1.38 W
   
Prime95 v27.9 + Furmark 1.10.6 (Full loading of both CPU and GPU) 85.68 W
Prime95 v27.9 (Full loading of CPU only) 73.79 W
   
1080p24 H.264 Blu-ray Playback from ODD 34.5 W
1080p24 VC-1 Blu-ray Playback from ODD 33.21 W
1080i60 VC-1 Blu-ray Playback from ODD 34.37 W
1080p24 VC-1 Blu-ray ISO Streaming from NAS 30.91 W
1080p24 H.264 MVC Blu-ray ISO Streaming from NAS 32.67 W
   
Blu-ray Rip to ISO from ODD 36.41 W

The following screenshots gives an idea of how the integrated GPU and the CPU share the thermal headroom. In the first case, we have full CPU loading and no load on the GPU.

The CPU package power is around 47 W, with the IA cores alone consuming around 37 W. The second screenshot shows the transition from purely full CPU loading to full CPU and GPU loading. The CPU package power rises from 47 W to around 54 W. The GPU is consuming around 18 W, while the IA cores go down to around 27 W.

QuickSync Gets Open Source Support, Regresses in Quality Concluding Remarks
Comments Locked

95 Comments

View All Comments

  • eio - Sunday, June 23, 2013 - link

    great example! very interesting.
    I agree with Montage that for most snapshots, HD4600 is significantly better than HD4000 for retaining much more texture, even for this frame 4 in 1080p.
    but in 720p HD4600 shows its trade off of keep more fine grained texture: looks like HD4600 are regressed in low contrast, large scale structral infomation.
    as you said, this type of regression can be more evident in video than snapshots.
  • eio - Sunday, June 23, 2013 - link

    another thing that surprises me is: x264 is a clear loser in this test. I don't understand why, what are the specific params that handbrake used to call x264?
  • nevcairiel - Monday, June 3, 2013 - link

    @ganeshts

    I'm curious, what did you use for DXVA2N testing of VC-1?
    LAV Video doesn't support VC-1 DXVA2 on Intel, at least on Ivy Bridge, and i doubt Haswell changed much (although it would be a nice surprise, i'll see for myself in a few days)
  • ganeshts - Monday, June 3, 2013 - link

    Hendrik,

    I made a note that DXVA2N for interlaced VC-1 has software fallback.

    That issue is still not fixed in Haswell. That is why you see QuickSync consuming lower power compared to DXVA2N for the interlaced VC-1 sample.
  • zilexa - Monday, June 3, 2013 - link

    To be honest, now that I have a near-perfect Raspberry setup, I would never buy a Core ix/AMD Ax HTPC anymore. Huge waiste of money for almost un-noticable image quality improvement.
    The Raspberry Pi will use max 6.5w, usually much lower. Speed in XBMC is no issue anymore, and it plays back all my movies just fine (Batman imax x264 rip 7-15MBps). I play mostly downloaded tv shows, streams and occasionally a movie. It also takes care of the whole download process in the background. So I don't even have a computer anymore at home. I sold my old AMD 780G based Silverstone M2 HTPC for €170 and it was the best decision ever.

    Still cool to read about the high end possibilities of HTPC/MadVR or actually just video playback and encoding, cos thats what this is really about. But I would never buy a system to be able to support this. HTPC in my opinion is to be in a lazy mode and able to playback your shows/movies/watch your photos and streams in good HD quality and audio.

    If you need HTPC, in my opinion there is no need for such an investment in a computer system which is meant for a huge variety of computing tasks.
  • jwcalla - Monday, June 3, 2013 - link

    It's going to depend on individual needs of course, and I think your Raspberry Pi is on the other end of the extreme, but otherwise I kind of have the same reaction. This has got to be an $800+ build here for an HTPC and then I begin to wonder if this is a practical approach.

    Owing to the fact that Intel's entire marketing strategy is to oversell to the consumer (i.e., sell him much more than he really needs), it seems that sometimes these reviews follow the strategy too closely. For an HTPC? Core i3 at the max. And even that's being generous. If one needs certain workloads like transcoding and such then maybe a higher end box is needed. But then I question if that kind of stuff is appropriate for an HTPC.
  • superjim - Monday, June 3, 2013 - link

    Playback a raw M2TS 1080p 60fps file on your Pi and get back to me.
  • phoenix_rizzen - Monday, June 3, 2013 - link

    How did you get around the "interface is not accelerated" issue on the RPi? I found it completely useless when trying to navigate the XBMC interface itself (you know, to select the show to watch). Sure, once the video was loaded, and processing moved over to the hardware decoder, things ran smooth as silk.

    I sold my RPi two weeks after receiving it due to this issue. Just wasn't worth the headaches. Since moved to a quad-core AthlonII running off an SSD with a fanless nVidia dGPU. So much nicer to work with.
  • vlado08 - Monday, June 3, 2013 - link

    What about Frame Rate Conversion (FRC) capability?
  • ericgl21 - Monday, June 3, 2013 - link

    Ganesh,

    Let's assume you have two 4K/60p video files playing in a loop at the same time for a duration of 3 hours.
    Is it possible that Iris or Iris Pro could play those two video streams at the same time, without dropping frames and without the processor throttling throughout the entire movie playback ?
    I mean, connecting two 4K TVs, one to the HDMI port and the other to the DisplayPort, and outputting each video to each TV. Would you say the Iris / Iris Pro is up to this task? Could you test this scenario?

Log in

Don't have an account? Sign up now