Concluding Remarks

The Haswell platform ticks all the checkboxes for the mainstream HTPC user. It fixes some nagging bugs left behind in Ivy Bridge. Setting up MPC-HC with LAV Filters was a walk in the park. With good and stable support for DXVA2 APIs in the drivers, even softwares like XBMC can take advantage of the GPU's capabilities. Essential video processing steps such as chroma upsampling, cadence detection and deinterlacing work beautifully. For advanced users, the GPU is capable of supporting madVR for most usage scenarios even with DDR3-1600 memory in the system.

Admittedly, there doesn't seem to be much improvement in madVR capabilities over the HD4000 in Ivy Bridge. The madVR developer has also added more complicated algorithms to the mix and made further refinements to existing ones (such as the anti-ringing filter). The improvements in the Intel GPU capabilities haven't kept up with the requirements of these updates. That said, madVR with DXVA2 scaling works well and looks good, satifying some of the HTPC users who have moved to it from the default renderers. We could certainly complain about some missing driver features and the lack of hardware decode capabilities for 10b H.264 streams. HEVC (H.265) decode acceleration is absent too. However, let us be reasonable and accept the fact that despite  anime's adoption of 10b H.264 in a big way, it is yet to gain mass-market appeal. HEVC was standardized pretty recently, and Haswell's GPU would have long been past the design stage by that time. To further Intel's defense, neither NVIDIA nor AMD support these two features.

Talking of display refresh rate support, Intel has finally fixed the 23.976 Hz bug which has been plaguing Intel-based HTPCs since 2008. This is going to make HTPC enthusiasts really happy. The fact that Intel manages the best match for the required refresh rate compared to AMD and NVIDIA cards is just icing on the cake. The 4K H.264 decode and output support from Haswell seems very promising for the 4K ecosystem. It also strengthens H.264's relevance for some time to come in the 4K arena.

The biggest disappointment with Haswell in the media department is the regression in QuickSync video transcode quality. The salt in the wound is really Intel's claims before launch of significant increases in QS video quality. Ivy Bridge definitely produces better quality QSV accelerated video transcodes.  Combine that with a lack of significant progress on the software support side until recently (hooray for Handbrake, boo for no substantial OS X deployment) and you'd almost get the impression that Intel was trying its best to ruin one of the most promising features of its Core microprocessors. Haswell doesn't ruin QuickSync, the technology is still a great way of getting your content quickly transcoded for use on mobile devices. However, in its current implementation, Haswell does absolutely nothing to further QuickSync - in fact, it's a definitely step in the wrong direction.

The low power consumption of the Haswell system makes it ideal for HTPC builds, and we are very bullish on the NUC as well as the capabilities of completely passive builds as HTPC platforms. Our overall conclusion is that Haswell takes discrete GPUs out of the equation for a vast majority of HTPC users. The few who care about advanced madVR scaling algorithms (such as Jinc and the anti-ringing filters for Lanczos) may need to fork out for a discrete GPU, but even those will probably be of the higher end variety rather than the entry level GT 640s and AMD 7750s that we have been suggesting so far.

Power Consumption
Comments Locked

95 Comments

View All Comments

  • heffeque - Monday, June 3, 2013 - link

    Well... the AMD A4-5000 seems to be perfect for HTPC and I don't see in this comparison.
    Why not try comparing what the AMD A4-5000 can do (4k, 23Hz, etc) versus this Haswell system?
    The CPU isn't that good, but there's no need for much CPU on HTPC systems, and also... the price, just look at the price.
  • meacupla - Monday, June 3, 2013 - link

    when you playback hi10 or silverlight content, having a fast cpu helps immensely, since those formats don't have dxva support.
  • halbhh2 - Tuesday, June 4, 2013 - link

    Consider prices, at $122 suggested, the new A10 6700 is going to be interesting as the real competition to this Intel chip.
  • majorleague - Wednesday, June 5, 2013 - link

    Here is a youtube link showing 3dmark11 and windows index rating for the 4770k 3.5ghz Haswell. Not overclocked.
    This is apparently around 10-20fps slower than the 6800k in most games. And almost twice the price!!
    Youtube link:
    http://www.youtube.com/watch?v=k7Yo2A__1Xw
  • JDG1980 - Monday, June 3, 2013 - link

    You can't use madVR on ARM. And most ARM platforms are highly locked down so you may be stuck with sub-par playback software from whoever the final vendor is.
  • HisDivineOrder - Tuesday, June 4, 2013 - link

    Because we don't live in next year, Doc Brown?
  • BMNify - Wednesday, June 12, 2013 - link

    for the same reason that QS isn't being used far more today, that being Intel and arm devs talk the talk but don't listen to or even stay in contact with the number one video quality partners ,that being the x264 and ffmpeg devs and provide their arm patches for review and official inclusion in these two key Cecil app code bases to actually use the arm/intel Low Level video encode/decode API's
  • MrSpadge - Monday, June 3, 2013 - link

    Use an i5 and the price almost drops in half. Then undervolt it a bit and each regular CPU will only draw 40 - 50 W under sustained load. Which media playback doesn't create anyway.
  • Mayuyu - Sunday, June 2, 2013 - link

    2-Pass encodes do not offer any improvements in compression efficiency in x264. The only time you would want to use a 2-Pass encode is to hit a certain file size.

    Quicksync is irrelevant because their h264 encodes are inferior in quality to xvid (which has been outdated for a long time now).
  • raulizahi - Thursday, August 29, 2013 - link

    @Mayuyu, 2-pass x264 encodes using VBR do offer improvements in compression efficiency at the same video quality. I have proven it many times. An example: target 720p50 at 3Mbps VBR, first pass I get a certain quality, second pass I get noticeably better quality.

Log in

Don't have an account? Sign up now