Many thanks to...

We must thank the following companies for kindly donating hardware for our test bed:

OCZ for donating the Power Supply and USB testing SSD
Micron for donating our SATA testing SSD
Kingston for donating our ECC Memory
ASUS for donating AMD GPUs
ECS for donating NVIDIA GPUs

Test Setup

Test Setup
Processor 2x Intel Xeon E5-2690
8 Cores, 16 Threads, 2.9 GHz (3.8 GHz Turbo) each
Motherboards Gigabyte GA-7PESH1
Cooling Intel AIO Liquid Cooler
Corsair H100
Power Supply OCZ 1250W Gold ZX Series
Memory Kingston 1600 C11 ECC 8x4GB Kit
Memory Settings 1600 C11
Video Cards ASUS HD7970 3GB
ECS GTX 580 1536MB
Video Drivers Catalyst 12.3
NVIDIA Drivers 296.10 WHQL
Hard Drive Corsair Force GT 60 GB (CSSD-F60GBGT-BK)
Optical Drive LG GH22NS50
Case Open Test Bed - DimasTech V2.5 Easy
Operating System Windows 7 64-bit
SATA Testing Micron RealSSD C300 256GB
USB 2/3 Testing OCZ Vertex 3 240GB with SATA->USB Adaptor

Power Consumption

Power consumption was tested on the system as a whole with a wall meter connected to the OCZ 1250W power supply, with a single 7970 GPU installed.  This power supply is Gold rated, and as I am in the UK on a 230-240 V supply, leads to ~75% efficiency > 50W, and 90%+ efficiency at 250W, which is suitable for both idle and multi-GPU loading.  This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency.  These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

Power Consumption - One 7970 @ 1250W Gold

Using two E5-2690 processors would mean a combined TDP of 270W.  If we make the broad assumption that the processors combined use 270W under loading, this places the rest of the motherboard at around 110-130W, which is indicated by our idle numbers (despite PSU efficiency). 

POST Time

Different motherboards have different POST sequences before an operating system is initialized.  A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized).  As part of our testing, we are now going to look at the POST Boot Time - this is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)  These results are subject to human error, so please allow +/- 1 second in these results.

POST (Power-On Self-Test) Time

The boot time on this motherboard is a lot longer than anything I have ever experienced.  Firstly, when the power supply is switched on, there is a 30 second wait (indicated by a solid green light that turns into a flashing green light) before the motherboard can be switched on.  This delay is to enable the management software to be activated.  Then, after pressing the power switch, there is around 60 seconds before anything visual comes up on the screen.  Due to the use of the Intel NICs, the LSI SAS RAID chips and other functionality, there is another 53 seconds before the OS actually starts loading.  This means there is about a 2.5 minute wait from power at the wall enabled to a finished POST screen.  Stripping the BIOS by disabling the extra controllers gives a sizeable boost, reducing the POST time by 35 seconds.

Gigabyte GA-7PESH1 Software Talking a Little About Processors
Comments Locked

64 Comments

View All Comments

  • mayankleoboy1 - Saturday, January 5, 2013 - link

    Ian :

    How much difference do you think Xeon Phi will make in these very different type of Computations?
    Will buying a Xeon Phi "pay itself out" as you said in the above comments ? (or is xeon phi linux only ?)
  • IanCutress - Saturday, January 5, 2013 - link

    As far as we know, Xeon Phi will be released for Linux only to begin with. I have friends who have been able to play with them so far, and getting 700 GFlops+ in DGEMM in double precision.

    It always comes down to the algorithm with these codes. It seems that if you have single precision code that doesn't mind being in a 2P system, then the GPU route may be preferable. If not, then Phi is an option. I'm hoping to get my hands on one inside H1 this year. I just have to get my hands dirty with Linux as well.

    In terms of the codes used here, if I were to guess, the Implicit Finite Difference would probably benefit a lot from Xeon Phi if it works the way I hope it does.

    Ian
  • mayankleoboy1 - Saturday, January 5, 2013 - link

    Rather stupid question, but have you tried using PGO builds ?
    Also, do you build the code with the default optimizations, or use the MSVC equivalent switch of -O2 ?
  • IanCutress - Saturday, January 5, 2013 - link

    Using Visual Studio 2012, all the speed optimisations were enabled including /GL, /O2, /Ot and /fp:fast. For each part I analysed the sections which took the most time using the Performance Analysis tools, and tried to avoid the long memory reads. Hence the Ex-FD uses an iterative loading which actually boosts speed by a good 20-30% than without it.

    Ian
  • Klimax - Sunday, January 6, 2013 - link

    Interesting. Why not Ox (all optimisations on)

    BTW: Do you have access to VTune?
  • IanCutress - Wednesday, January 9, 2013 - link

    In case /Ox performs an optimisation for memory over speed in an attempt to balance optimisations. As speed is priority #1, it made more sense to me to optimise for that only. If VS2012 gave more options, I'd adjust accordingly.

    Never heard of VTune, but I did use the Performance Analysis tools in VS2012 to optimise certain parts of the code.

    Ian
  • Beenthere - Saturday, January 5, 2013 - link

    Business and mobo makers do not use 2P mobos to get high benches or performance bragging rights per se. These systems are build for bullet-proof reliability and up time. It does no good for a mobo/system to be 3% faster if it crashes while running a month long analysis. These 2P mobos are about 100% reliability, something rarely found in a enthusiasts mobo.

    Enterprise mobos are rarely sold by enthusiast marketeers. Newegg has a few enterprise mobos listed primarily because they have started a Newegg Biz website to expand their revenue streams. They don't have much in the line of true enterprise hardware however. It's a token offering because manufacturers are not likely to support whoring of the enterprise market lest they lose all of their quality vendors who provide customer technical product support.
  • psyq321 - Sunday, January 6, 2013 - link

    Actually, ASUS Z9PE-D8 WS allows for some overclocking capabilities.

    CPU overclocking with 2P/4P Xeon E5 (2600/4600 sequence) is a no-go because Intel explicitly did not store proper ICC data so it is impossible to manipulate BCLK meaningfully (set the different ratios). Oh, and the multipliers are locked :)

    However, Z9PE D8 WS allows memory overclocking - I managed to run 100% 24/7 stable with the Samsung ECC 1600 DDR3 "low voltage" RAM (16 GB sticks) - just switching memory voltage from 1.35v to 1.55v allows overclocking memory from 1600 MHz to 2133 MHz.

    Why would anyone want to do that in a scientific or b2b environment? The only usage I can see are applications where memory I/O is the biggest bottleneck. Large-scale neural simulations are one of such applications, and getting 10 GB/s more of memory I/O can help a lot - especially if stable.

    Also, low-latency trading applications are known to benefit from overclocked hardware and it is, in fact, used in production environment.

    Modern hardware does tend to have larger headrooms between the manufacturer's operating point and the limits - if the benefit from an overclock is more benefitial than work invested to find the point where the results become unstable - and, of course, shorter life span of the hardware - then, it can be used. And it is used, for example in some trading scenarios.
  • Drazick - Saturday, January 5, 2013 - link

    Will You, Please, Update Your Google+ Page?

    It would be much easier to follow you there.
  • Ryan Smith - Saturday, January 5, 2013 - link

    Our Google+ page is just a token page. If you wish to follow us then your best option is to follow our RSS feeds.

Log in

Don't have an account? Sign up now