Final Words

Intel is back, but with an enterprise focus. The S3700 is one of the most exciting drives I've had the opportunity to test. Its architecture is more than just a better, faster evolution of designs that came before it, the S3700 is truly something new.

I view the evolution of "affordable" SSDs as falling across three distinct eras. In the first era we saw most companies focusing on sequential IO performance. These drives gave us better-than-HDD read/write speeds but were often plagued by insane costs or horrible pausing/stuttering due to a lack of focus on random IO. In the second era, most controller vendors woke up to the fact that random IO mattered and built drives to deliver the highest possible IOPS. I believe Intel's SSD DC S3700 marks the beginning of the third era in SSD evolution, with a focus on consistent, predictable performance. At least compared to the drives/controllers used in this article, Intel's S3700 appears to be ahead of the curve. I suspect the next major eras will be the transition to PCIe based interfaces, followed by the move away from NAND altogether (there may be another distinct period in between those two as well).

The S3700 is an extremely exciting SSD. For its indended market, the S3700 continues Intel's push to reduce the cost of enterprise storage. The days of spending thousands of dollars on a relatively small amount of NAND for use in a server are over. Intel is guaranteeing 1 - 14PB of write endurance on the S3700, which should be more than enough for the vast majority of workloads (even overkill for many). Performance and IO consistency are both very good, at least when dealing with 4KB random writes. With the exception of smaller-than-4KB, unaligned IO performance the S3700 is among the fastest enterprise SATA SSDs we've tested. It's a clear improvement over all of Intel's previous drives.

With the exception of power consumption, the S3700's controller is the true third generation successor to Intel's X25-M G2. It focuses on a new aspect of performance that, until we move to SATA Express, should be the target for all high-end SSD controllers going forward. Depending on the application, consistency of performance can be just as important as absolute performance itself. I can't stress this enough: we are largely saturating 6Gbps SATA and random IO is more than good enough for many, delivering a better experience should be everyone's target going forward.

It's good to see Intel back in the saddle with a competitive home grown controller, my only complaint here is that I wish we could have the same technology applied across the entire market. Although less profitable, the consumer SSD space is in need of more high quality competitors that push the industry forward. Without Intel aggressively playing in both the consumer and enterprise spaces I worry that we'll see a race to the bottom with manufacturers focusing on reducing cost without necessarily prioritizing innovation. The IO consistency offered by the S3700 is something I know I wish I had in my notebook. I frequently encounter hiccups in performance that I do my best to combat by throwing additional spare area at the problem, but a more fundamental architectural solution would be ideal.

 

Update: I'll be answering questions about the S3700 live from this year's SC12 conference. Head over here to get your questions answered!

Power Consumption
Comments Locked

30 Comments

View All Comments

  • Hans Hagberg - Monday, November 12, 2012 - link

    An enterprise storage review today is not really complete without an array of 15K mechanical disks for comparison. This is still what is being used for performance in most cases and that is what we are up against when we are looking to motivate SSDs in existing configurations.

    And for completeness, please throw in PCI-based SSD storage as well. Such storage always come up in discussions around SSD but there is too little independent test data available to take decisions.

    Another question when reading the review is about the test system being used. I couldn't find this information?

    Also - enterprise storage is most often fronted by high-end controllers with lot's of cache. It would be interesting to see an analysis of how that impacts the different drives and their consistency. Will the consistency be equalized by a big controller and cache in front of it?

    The Swingbench anomaly is unfortunate because database servers are probably the primary application for massive implementation of SSD storage. It would be nice if the anomaly could be sorted out so we could see what the units can do. Normally, if one cares for enterprise performance, you are careful with alignment and separation of storage (data, logs etc.) so I agree with the Intel statement on this. Changing the benchmark would tear up the old test data so I'm not sure how to fix it without starting over.

    The review format and test case selection is excellent. Just give us some more data points.
    I would go as far as to say I would pay good money to read the review if the above was included.
  • Sb1 - Tuesday, November 13, 2012 - link

    "An enterprise storage review today is not really complete without an array of 15K mechanical disks for comparison."
    ... "And for completeness, please throw in PCI-based SSD storage as well."

    I __fully__ agree with Hans Hagberg

    I thought this was a good article, but it would be an excellent one with both of these.

    Still keep up the good work.
  • Troff - Wednesday, November 14, 2012 - link

    I agree as far as PCI-based SSDs go, but I see no point in including the 15K mechanical drive array for the same reason you don't see velocipedes in car reviews.
  • ilkhan - Tuesday, November 13, 2012 - link

    So what I see here is that for an enterprise server drive, go with this Intel. For a desktop drive, this intel or a samsung 840pro, for a laptop drive, the samsung 840pro is best.

    That about sum it up?
  • korbendallas - Friday, November 16, 2012 - link

    Instead of average and max latency figures, I would love to see percentiles: 50%, 90%, 99%, 99,9% for instance. If you look at intel's claims for these drives, they're in percentiles too.

    If your distribution does not follow a bell curve, which is the case in many of the SSDs you are testing, average is useless. And as you already know (and why you didn't include it before now), max is useless too.
  • dananski - Saturday, November 17, 2012 - link

    I'd really like to see more graphs like the ones on "Consistent Performance: A Reality" showing how much variation drives can have in instantaneous IOPS. These really do a great job of showing exactly what Intel has fixed and I can see the benefit in some enterprise situations. A millisecond hiccup is an eternity for the CPU waiting for that data.

    Personally I'd now like to know:
    * How much of a problem this can be on consumer drives, where sustained random IO is less common?
    * Is this test a good way to characterise the microstutter problem for a particular drive?
    * How badly are drives with uneven IOPS distributions affected by RAID? (I know this was touched on briefly in the webcast with Intel)
  • junky77 - Sunday, November 18, 2012 - link

    the consistency of current consumer SSDs?
  • virtualstorage - Tuesday, March 12, 2013 - link

    I see the test results upto 2000 seconds. With a enterprise array, there will be continuos ios in 24/7 production environment. What is the performance behavior of Intel SSD DCS3700 with continuous io's over many hours?
  • damnintel - Wednesday, March 13, 2013 - link

    heyyyy check this out damnintel dot com
  • rayoflight - Sunday, October 6, 2013 - link

    Got two of these. Both of them failed after approx. 30 boot up's. They arent recognised anymore by the bios or as external harddrives on a different system, as if they are completely dead. Faulty batch? Or do they "lock up" ? Anyone had this problem?

Log in

Don't have an account? Sign up now