Platform Retargeting

Since the introduction of Conroe/Merom back in 2006 Intel has been prioritizing notebooks for the majority of its processor designs. The TDP target for these architectures was set around 35 - 45W. Higher and lower TDPs were hit by binning and scaling voltage. The rule of thumb is a single architecture can efficiently cover an order of magnitude of TDPs. In the case of these architectures we saw them scale all the way up to 130W and all the way down to 17W.

In the middle of 2011 Intel announced its Ultrabook initiative, and at the same time mentioned that Haswell would shift Intel's notebook design target from 35 - 45W down to 10 - 20W.

At the time I didn't think too much about the new design target, but everything makes a lot more sense now. This isn't a "simple" architectural shift, it's a complete rethinking of how Intel approaches platform design. More importantly than Haswell's 10 - 20W design point, is the new expanded SoC design target. I'll get to the second part shortly.

Platform Power

There will be four client focused categories of Haswell, and I can only talk about three of them now. There are the standard voltage desktop parts, the mobile parts and the ultra-mobile parts: Haswell, Haswell M and Haswell U. There's a fourth category of Haswell that may happen but a lot is still up in the air on that line.

Of the three that Intel is talking about now, the first two (Haswell/Haswell M) don't do anything revolutionary on the platform power side. Intel is promising around a 20% reduction in platform power compared to Sandy Bridge, but not the order of magnitude improvement it promised at IDF. These platforms are still two-chip solutions with the SoC and a secondary IO chip similar to what we have today with Ivy Bridge + PCH.

It's the Haswell U/ULT parts that brings about the dramatic change. These will be a single chip solution, with part of the voltage regulation typically found on motherboards moved onto the chip's package instead. There will still be some VR components on the motherboard as far as I can tell, it's the specifics that are lacking at this point (which seems to be much of the theme of this year's IDF).

Seven years ago Intel first demonstrated working silicon with an on-chip North Bridge (now commonplace) and on-package CMOS voltage regulation:

The benefits were two-fold: 1) Intel could manage fine grained voltage regulation with very fast transition times and 2) a tangible reduction in board component count.


2005 - A prototype motherboard using the technology. Note the lack of voltage regulators on the motherboard and the missing GMCH (North Bridge) chip.

The second benefit is very easy to understand from a mobile perspective. Fewer components on a motherboard means smaller form factors and/or more room for other things (e.g. larger battery volume via a reduction in PCB size).

The first benefit made a lot of sense at the time when Intel introduced it, but it makes even more sense when you consider the most dramatic change to Haswell: support for S0ix active idle.

Introduction: Stating the Problem The New Sleep States: S0ix
POST A COMMENT

248 Comments

View All Comments

  • zwillx - Monday, January 21, 2013 - link

    Apple. Or are you joking. I personally hate Apple and have since the original iMac but their engineering is top notch when it comes to getting ideal performance from silicon to user. So.. guessing that's the reference. Reply
  • Silma - Monday, October 08, 2012 - link

    A fine read, technically very comprehensive, but still overly melodramatic.

    While it is true that it is crucial for Intel to step a foot in the byod market some things still hold true:
    - In value and profit the PC processor market is much bigger than the byod processor market and will stay so for years because PCs, especially business PCs won't disappear anytime soon.
    - Nobody can touch Intel in this market, it has been proved for decades. Not AMD at the height of its success, not mighty IBM, not Sun, nobody.
    - Contrary to what you say Intel has a definitive production advantage and there are very few fabs able to compete. Note that Apple is incapable of producing processors, it is dependent on external manufacturers.
    - What Apple does with its processor is interesting business wise for its iPods/Pads/Phones, but Apple doesn't have the research power Intel and others have in the chip space and I can't see how it will innovate better than Intel and other competitors.
    - Intel is aware of its shortcomings, is pushing tremendously in the right direction. A competitor that doesn't rest on its laurels is a mighty threat, ARM beware.
    - If Apple stops using Intel processors, it will of course wipe a few hundred millions of Intel's turnover but won't be anything remotely dangerous for Intel
    - It remains to be seen that Apple users will accept yet another platform change.
    - It remains to be seen that it would make sense business-wise for Apple
    - I am quite sure many phone companies will be open about renewed chip competition and not letting a single platform become too powerful.

    All in all it seems to me Intel is as dangerous as ever, executing very well in its core business and heading towards great things in the phone/pad space.
    Reply
  • johnsmith9875 - Thursday, October 11, 2012 - link

    Why couldn't they at least stick to LGA2011? Reply
  • defiler99 - Tuesday, October 16, 2012 - link

    One of the best articles on Anandtech in some time. This is great original tech industry reporting. Reply
  • Gc - Saturday, January 12, 2013 - link

    Congratulations, an intel cpu engineer wrote around 27 Dec 2012:

    "... Anandtech's latest Haswell preview is also excellent; missing some key puzzle pieces to complete the picture and answer some open questions or correct some details but otherwise great. ..."

    http://www.reddit.com/r/IAmA/comments/15iaet/iama_...
    Reply
  • xaml - Thursday, May 23, 2013 - link

    This was first posted here a few handfuls of pages back as a comment by user "telephone". ^^ Reply
  • yhselp - Friday, March 29, 2013 - link

    A few questions.

    Is there going to be a replacement (37W) for the current IVB 35W quad-core part? Quite a few designs are now dependable on this, lower power quad-core option - Sony S-series and Razer Blade, to name a few.

    When can we expect all mobile CPUs (except maybe for the extreme series) to fall into the 10W-20W range? In three years' time and 10nm?

    The decision to not include GT3 with desktop parts is very disappointing. A 35/45W low-voltage part with GT3 would make for an excellent HTPC build, among other things. Is there a chance Intel change their mind and start shipping GT3 desktop parts at some point?
    Reply
  • JVimes - Tuesday, August 19, 2014 - link

    Does EU stand for Execution Unit? That was surprisingly hard to google for. Reply

Log in

Don't have an account? Sign up now