TSX

Johan did a great job explaining Haswell's Transactional Synchronization eXtensions (TSX), so I won't go into as much depth here. The basic premise is simple, although the implementation is quite complex.

It's easy to demand well threaded applications from software vendors, but actually implementing code that scales well across unlimited threads isn't easy. Parallelizing truly independent tasks is the low hanging fruit, but it's the tasks that all access the same data structure that can create problems. With multiple cores accessing the same data structure, running independent of one another, there's the risk of two different cores writing to the same part of the same structure. Only one set of data can be right, but dealing with this concurrent access problem can get hairy.

The simplest way to deal with it is simply to lock the entire data structure as soon as one core starts accessing it and only allow that one core write access until it's done. Other cores are given access to the data structure, but serially, not in parallel to avoid any data integrity issues.

This is by far the easiest way to deal with the problem of multiple threads accessing the same data structure, however it also prevents any performance scaling across multiple threads/cores. As focused as Intel is on increasing single threaded performance, a lot of die area goes wasted if applications don't scale well with more cores.

Software developers can instead choose to implement more fine grained locking of data structures, however doing so obviously increases the complexity of their code.

Haswell's TSX instructions allow the developer to shift much of the complexity of managing locks to the CPU. Using the new Hardware Lock Elision and its XAQUIRE/XRELEASE instructions, Haswell developers can mark a section of code for transactional execution. Haswell will then execute the code as if no hardware locks were in place and if it completes without issues the CPU will commit all writes to memory and enjoy the performance benefits. If two or more threads attempt to write to the same area in memory, the process is aborted and code re-executed traditionally with locks. The XAQUIRE/XRELEASE instructions decode to no-ops on earlier architectures so backwards compatibility isn't a problem.

Like most new instructions, it's going to take a while for Haswell's TSX to take off as we'll need to see significant adoption of Haswell platforms as well as developers embracing the new instructions. TSX does stand to show improvements in performance anywhere from client to server performance if implemented however, this is definitely one to watch for and be excited about.

Haswell also continues improvements in virtualization performance, including big decreases to guest/host transition times.

Decoupled L3 Cache Haswell's GPU
POST A COMMENT

247 Comments

View All Comments

  • tipoo - Friday, October 05, 2012 - link

    "Overall performance gains should be about 2x for GT3 (presumably with eDRAM) over HD 4000 in a high TDP part."

    Does this mean the regular GT3 without eDRAM cache will be twice the performance of the HD4000 and the one with the cache will be 4x? Or that the one with the cache will be 2x? In which case, what would the one with no cache perform like, with so many more EUs the first is probably correct, right?
    Reply
  • tipoo - Friday, October 05, 2012 - link

    "presumably with eDRAM"...So the GT3 in Haswel has over double the EUs of Ivy Bridge, but without the cache it doesn't even get to 2x the performance? Seems off to me, doesn't it seem like the GT3 on its own would be 2x the performance while the eDRAM cache would make for another 2x? Reply
  • DanNeely - Saturday, October 06, 2012 - link

    It probably means that, like AMD, Intel is hitting the wall on memory bandwidth for IGPs. When it finally arrives, DDR4 will shake things up a bit; but DDR3 just isn't fast enough. Reply
  • tipoo - Sunday, October 07, 2012 - link

    I don't think so, doesn't the HD4000 have more bandwidth to work with than AMDs APUs yet offers worse performance? They still had headroom there. I think it's just for TDP, they limit how much power the GPUs can use since the architecture is oriented at mobile. Reply
  • magnimus1 - Friday, October 05, 2012 - link

    Would love to hear your take on how Intel's latest and greatest fares against Qualcomm's latest and greatest! Reply
  • cosmotic - Friday, October 05, 2012 - link

    Ah, an MPEG2 encoder. Just in time! Reply
  • jamyryals - Friday, October 05, 2012 - link

    This made me :) Reply
  • name99 - Friday, October 05, 2012 - link

    We laugh but one possibility is that Intel hopes to sell Haswell's inside US broadcast equipment.
    There isn't much broadcast equipment sold, but the costs are massive, and there's no obvious reason not to replace much of that custom hardware with intel chips.
    And much of the existing broadcast hardware (at least the MPEG2-encoding part) is obviously garbage --- the artifacts I see on broadcast TV are bad even for the prime-time networks, and are truly awful for the budget independent operators.

    Much like they have written a cell-tower stack to run on i7's to replace the similarly grossly over-priced custom hardware that lives in cell towers, and are currently deploying in China. Anand wrote about this about two weeks ago.
    Reply
  • vt1hun - Friday, October 05, 2012 - link

    Do you have an idea when Intel will move to DDR4 ? Not with Haswell according to this article.

    Thank you
    Reply
  • tipoo - Friday, October 05, 2012 - link

    Haswell EX for servers will support DDR4, but even Broadwell on desktops is only DDR3, we won't see DDR4 in desktops until 2015. Reply

Log in

Don't have an account? Sign up now