Many thanks to...

We must thank the following companies for kindly donating hardware for our test bed:

OCZ for donating the Power Supply and USB testing SSD
Micron for donating our SATA testing SSD
G.Skill for donating our memory kits
ASUS for donating AMD GPUs and some IO Testing kit
ECS for donating NVIDIA GPUs

Test Setup

Processor Intel Core i7-3770K ES
4 Cores, 8 Threads, 3.5 GHz (3.9 GHz Turbo)
Motherboards ASRock Z77 Extreme4
ASRock Z77 Extreme6
ASRock Z77 Extreme9
ASRock Fatal1ty Z77 Professional
ASUS P8Z77-V Pro
ASUS P8Z77-V Deluxe
ASUS P8Z77-V Premium
Biostar TZ77XE4
ECS Z77H2-AX
EVGA Z77 FTW
Gigabyte GA-Z77X-UD3H
Gigabyte GA-Z77X-UD5H
Gigabyte GA-Z77MX-D3H
Gigabyte G1.Sniper 3
Gigabyte GA-Z77X-UP4 TH
MSI Z77A-GD65
Cooling Intel All-in-One Liquid Cooler
Power Supply OCZ 1250W Gold ZX Series
Memory GSkill RipjawsZ 4x4 GB DDR3-2400 9-11-11 Kit
GSkill TridentX 2x4 GB DDR3-2666 11-13-13 Kit
Memory Settings XMP (2400 9-11-11)
Video Cards ASUS HD7970 3GB
ECS GTX 580 1536MB
Video Drivers Catalyst 12.3
NVIDIA Drivers 296.10 WHQL
Hard Drive Micron RealSSD C300 256GB
Optical Drive LG GH22NS50
Case Open Test Bed - CoolerMaster Lab V1.0
Operating System Windows 7 64-bit
SATA Testing Micron RealSSD C300 256GB
USB 2/3 Testing OCZ Vertex 3 240GB with SATA->USB Adaptor

Power Consumption

Power consumption was tested on the system as a whole with a wall meter connected to the OCZ 1250W power supply, while in a dual 7970 GPU configuration.  This power supply is Gold rated, and as I am in the UK on a 230-240 V supply, leads to ~75% efficiency > 50W, and 90%+ efficiency at 250W, which is suitable for both idle and multi-GPU loading.  This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency.  These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

Power Consumption - Idle

Power Consumption - Metro2033

Power Consumption - OCCT

Similar to the X79S-UP5, the IR3550 ICs used in these UP boards do really well when it comes to power consumption.  The Z77X-UP4 TH takes the top spot in idle power consumption on our test bed.

Gigabyte Z77X-UP4 TH Overclocking POST Time and Overclock Comparison
Comments Locked

15 Comments

View All Comments

  • IanCutress - Monday, September 17, 2012 - link

    I have access to a TB device, but it is only the two-bay Little Big disk with a pair of Intel Drives. Can't really stress the TB implementation in terms of peak speeds, and in our copy test it can get anything from 1.1 seconds to 3.3 seconds depending on if the wind is blowing, or the tides are in (very unpredictable).

    When I can get a 4-bay TB device in, I will fill it with 500MB/s+ SSDs and get down to testing. Unless there is a specific test you would like me to do (4K et al).

    Ian
  • repoman27 - Monday, September 17, 2012 - link

    I am very curious about a couple points, however they are not the easiest scenarios to test.

    Firstly, GIGABYTE depicts the ability to support a total of 12 connected Thunderbolt devices plus 2 displays, or 6 devices AND 1 display per port. [ http://www.gigabyte.com/microsite/306/images/thund... ] This seems to fly in the face of what we have been told by Apple and Intel about supported topologies, i.e. "up to a total of 6 devices, including up to 2 high resolution DisplayPort v1.1a displays". Can a single Cactus Ridge DSL3510L really handle that many devices? Is there some difference in implementation between Windows and Mac OS?

    GIGABYTE also claims a full 10 Gbps of PCIe bandwidth from each port. Now I would also doubt that claim, and in the article you indicated this wasn't happening with a single DSL3510L. However, Anand achieved 1380 MB/s by using both Thunderbolt ports during his review of the MBPR, which also uses just one DSL3510L controller. Now ultimately this controller is bound by its PCIe 2.0 x4 back end, which should limit it to around 1600 MB/s of payload throughput, but breaking the 1000 MB/s barrier would seem to imply that there is more than one PCIe to Thunderbolt protocol adapter in these Cactus Ridge chips. This would be significant if true. Any chance you could lean on it hard enough to find out?
  • goinginstyle - Monday, September 17, 2012 - link

    I agree about the need for TB testing as I have had nothing but issues with this board and a Seagate GoFlex attached on one port and a Apple TB 27" monitor on the other port. The monitor will flicker badly at times (does not happen on a competing board and a MacBook Pro) while the Seagate drive will "disappear" and requires a power on/off before being recognized again.
  • thewhat - Tuesday, September 18, 2012 - link

    It would be great if you could test with Speedfan whether the fan speed can be controlled independently for every header.
  • NiggaASD - Sunday, December 9, 2012 - link

    Ian, I think you are wrong about Gigabyte manipulating CPU voltage readings. The voltage reading 1.068 V is probably not CPU vcore, it could be VTT(VCCIO) voltage. It is known that some GB motherboards have this "feature", that they show VTT voltage in CPU-Z. For example, my GA-P67A-UD3P-B3 board shows 1.092 V in CPU-Z as vcore when I have set VTT to 1.1 V in BIOS.

Log in

Don't have an account? Sign up now