The GPU

The PowerVR SGX 540 in Medfield is no different from what you'd get in an OMAP 4460, with the exception that it's clocked a bit higher at 400MHz. 

The SGX 540 here is a remnant of Intel's earlier strategy to have Medfield out far sooner than it actually is going to show up on the market. Thankfully Intel has plans to introduce a PowerVR SGX 543MP2 based Medfield successor also before the end of the year.

Video Decode/Encode Support, Silicon Hive ISP

Intel relies on two more IP blocks from Imagination Technologies: the VDX385 and VDE285 for 1080p video decode and encode. Intel claims support for hardware accelerated 1080p30 decode, High Profile. Maximum supported bitrate is apparently up to 50Mbps, although Intel only demonstrated a 20Mbps High Profile stream:

 

Intel also claims support for 1080p30 video encode.

Medfield's ISP is provided by Intel owned Silicon Hive. The ISP supports cameras ranging from 5MP to 16MP (primary sensor), with the reference design standardizing on an 8MP sensor. Medfield supports burst capture at up to 15 fps (8MP). 

The Process

Intel bifurcated its process technology a few years ago, offering both low power and high performance versions of each of its process nodes. Today those process nodes are staggered (45nm LP after high perf 32nm, 32nm LP debuts after high performance 22nm, etc...) however Intel plans on bringing both in lockstep.

Medfield debuts on Intel's 32nm LP process. The only details we have from Intel are that leakage is 10x lower than the lowest on 45nm. Compared to Moorestown, Medfield boasts 43% lower dynamic power or 37% higher frequency at the same power level.

The bigger and more valid comparison is to TSMC's 28nm process, which is what companies like Qualcomm will be using for their next-generation SoCs. It's unclear (and very difficult) to compare different architectures on different processes, but it's likely that Intel's 32nm LP process is more comparable to TSMC's 28nm LP process than it would be to any 4x-nm node.

It is important to note that Intel seems very willing to sacrifice transistor density in order to achieve lower power consumption where possible. I don't believe Intel will have the absolute smallest die sizes in the market, but I also don't believe it's clear what the sweet spot is for mobile SoCs at this point. It's quite likely that Apple's ~120mm^2 target is likely where everyone will eventually end up in the near term.

The Roadmap

Although Medfield is already posting competitive performance numbers, its current competition is roughly a year old. Within the next two quarters we'll see smartphones and tablets shipping based on Qualcomm's Krait. The next-generation Snapdragon platform should be Cortex A15-like in its performance level

Today we have Medfield, a single core Atom paired with a PowerVR SGX 540 built on Intel's 32nm LP process. Before the end of the year we'll see a dual-core Atom based Medfield with some form of a GPU upgrade. I wouldn't be too surprised to see something like a PowerVR SGX 543MP2 at that point either. In tandem Intel will eventually release an entry level SoC designed to go after the more value market. Finally we'll see an Intel Atom based SoC with integrated Intel baseband from its Infineon acquisition - my guess is that'll happen sometime in 2013.

The CPU What's Different This Time Around: Google & A Sweet Reference Platform
Comments Locked

164 Comments

View All Comments

  • Dribble - Thursday, January 12, 2012 - link

    I see fudzilla managed to get a BenchmarkPi score:
    The HTC Thunderbolt (Snapdragon 1GHz): 888ms
    Lenovo K800 (1.6Ghz Atom): 743ms
    LG Optimus 2X (Tegra 2): 550ms
  • french toast - Thursday, January 12, 2012 - link

    Yea when you get past the Intel marketing and start digging you find its not really thtat special when compared to last years designs. hers some more. Intel medfield 3791 quadrant. samsung galaxy note @1.4ghz 4300+

    http://www.youtube.com/watch?v=k2SzV_bl76k

    If you level the clock speed and use the same software on the ARMs you would get better than this in cafeinemark;

    http://androidandme.com/2012/01/news/intel-medfiel...

    Add that to the other links i posted earlier, and do some multithreaded tests and the Atom doesn't look that impressive compared to duel core A9s on 40nm...let alone quad core kraits on 28nm...
  • dwade123 - Thursday, January 12, 2012 - link

    Give a a few years and we 'll see Intel dominating this market.
  • Targon - Thursday, January 12, 2012 - link

    This is a single-core chip....in an environment that is already going to be dominated by dual-core chips by the time it is released. What is Intel trying to do, emulate Palm, who would announce something that sounds great, then a year later when product is actually shipping, seems pretty weak? Palm died as a result(even though it was under the HP umbrella at the end), and Intel is just following that example of what NOT to do.

    Intel may have process advantages, but Intel doesn't do much when it comes to real innovation.
  • happycamperjack - Thursday, January 12, 2012 - link

    Judging from the BrowserMark and SunSpider, Medfield has tegra 3 beat for about 10% to 30% in a more single threaded application. But in a more threaded application such as photo editing apps, some games and also multitasking, Tegra 3 would come out on top. Not to mention Tegra 3 would probably do a lot better in battery life and 3D games as well.

    But backward compatibility for lower end Windows 8 tablets? Yes please!
  • Lucian Armasu - Friday, January 13, 2012 - link

    A 10% performance different shouldn't be surprising, considering Intel Atom is running at 1.6 Ghz and Tegra 3's first core is running at 1.4 Ghz. This only means that a Cortex A9 core is about as powerful as Atom at the same clock speed. And by the time it's out it will have to compete with Cortex A15, which is twice as powerful as Cortex A9 for the same clock speed. Plus it will be dual core vs the single core Atom. Krait chips should be in the same ballpark as Cortex A15, perhaps a bit weaker, but still much more powerful than Atom.

    As for the compatibility with Windows 8. I don't understand what's the benefit of that? To use programs that are not optimized for touch? Why? If that was such a big deal, you could already use Windows 7 tablets. Whether Microsoft is pushing for ARM tablets, or x86 tablets, they still have to start from scratch, because they need apps that are fully optimized for touch, and not for the mouse. So in this case x86 has no advantage over ARM, at least not more than it already had in the Windows7-era. And if Microsoft were smart, they'd actually push the ARM tablets instead to compete on battery life.
  • happycamperjack - Friday, January 13, 2012 - link

    You don't understand the benefit of backward compatibility?? Are you serious?? How about instant access to biggest libraries of applications ever while Windows 8 apps have time to mature.

    As for the performance of the chip, I was disappointed about Intel's SoC until I realize that it's actually running android 2.3. So it would be more fair to compare the performance against another Android 2.3, Galaxy S II, which benchmarked at half the speed of Intel! But it's GPU is definitely garbage.
  • thunng8 - Friday, January 13, 2012 - link

    The Motorola RAZR is also running 2.3.
  • french toast - Friday, January 13, 2012 - link

    What has been misleading about the Intel pushed benchmarks in this article, is that although the Medfield runs Gingerbread, it also run a heavily updated varient.2.3.7..which according to the boys over at xda, has been optimised to near ICS levels..
    Note that the phones benchmarked against it run stock Gingerbread which can be noticebely slower on older versions.

    Another thing to note, the phones benchmanrked against, also have heavy custom UI skins over the top..aka sense/touchwiz which saps power, hence why uses prefer to root their phone..for that very perforance enhanced reason.
    -Where as the Medfield reference phone does not.

    If you level all software equal, i very much doubt the Medfield would have a lead in any benchmark, and in some cases would likely lose, such as graphics, multhreaded, and battery use scenarios that stress the cpu.

    That is against phones that have been on the market 18months or so by the time Medfield ships AND are lower clocked A9s.
  • CUEngineer - Friday, January 13, 2012 - link

    You guys are hilarious... Obviously there will be an optimized OS version that google and intel worked on, since its using a different ISA then arm, they need to optimize the binaries to do things such as take advantage of instructions intel adds for performance which no ARM IP licenseee company is allowed to do... Any good company will optimize software to run on their hardware to give better results and that is valid...
    Intel has been doing high performance designs for many years now, ARM just designs their IP to work simple and without consuming much power, so it wouldnt be hard to think that intel analyzes certain performance features differently such as handling hits under misses and taking multiple miss requests without bottlenecking the system... an out of order CPU could make this impact less since other instructions might be able to be scheduled while waiting for the miss to be completed..
    Either way all you folks should worry about is how close those power numbers because once intel gets in this space it is going to dominate, and will have attractive offerings since everyone else is basically using the same IP from arm with different wrappers...

Log in

Don't have an account? Sign up now