Power Management in Windows Server 2008 SP2

Enabling the C-states in ESX 5i might bring the Opteron 6276 an improved performance/watt ratio. The question is whether the low power consumption at light loads will negate the performance impact. Although power consumption is lowered by using the "C-state enable" tweak, it is not spectacular: 10% lower energy consumption in idle will probably not give the Opteron 6276 an amazing performance/watt ration in ESXi. The impact of this tweak will make a difference in our EWL testing, not in the "full speed ahead" benchmarks. Also, our vApus FOS EWL testing showed that the Xeon consumed 25% less energy, so it will remain ahead.

As the virtualization benchmarks require more time to run, we will have to delay investigating them for a later article. But what about Windows 2008 R2? The idle power of the Opteron 6276 was excellent there. So which power policy should be chosen in Windows 2008? We compared Opteron performance in "High performance" to the Opteron 6276 performance when the power management policy was set to "Balanced.

  Opteron 6276
"High Performance"
Opteron 6276
"High Performance"
+ C6 enable.
Xeon X5670
"High performance" vs.
Xeon X5670 "Balanced"
Cinebench Single-threaded +16% +18% +1%
Cinebench Multi-threaded +5% +5% +1%
Blender +4% +13% +1%
Encryption/Decryption AES +43% / +42% +43% / +44% +28% / +28%
Encryption/Decryption Twofish/Serpent +8% / +8% +8 / +8% +0 / +0%
Compression/decompression +9% / +4% +9 / +4% +0 / +2%

If we combine the our idle power consumption measurements with these numbers, things get a lot clearer. The "balanced" power policy disables turbo. Therefore, the maximum performance boost from enabling "high performance" should be 13%. The TrueCrypt benchmarks show much larger increases (see (*)), which we honestly don't understand. The performance boost (40%) is only possible if the CPU boosts to 3.2GHz, but that is not supposed to happen. First, the TrueCrypt software is well threaded and uses all clusters (32 threads). Second, we disabled C6, so normally the CPU is not able to boost to 3.2GHz. Third, our monitoring clearly indicated a 2.6GHz clock as expected.

We also did a quick x264 4.0 benchmark (1st pass) which is lightly threaded and showed the same performance (46%!) increase by simply switching from "Balanced" to "High performance" (turbo limited to 2.6GHz, no C6). The Xeon only got a 13% increase in performance..

Closer monitoring reveals that "Balanced" frequently reduces the cores to 1.4GHz. So we have a similar situation as the one where we found power management problems on the AMD "Istanbul" Opteron when the power policy was set to "Balanced".

Basically "Balanced" brings the clock speed down to a low P-state even when a thread is demanding the maximum processing power. Or in other words, the power manager is too eager to bring the clock speed down instead of looking ahead: the polling is blind for the very near future. The result is that quite often the workload gets processed at 1.4GHz (for a short time).

In contrast, the high performance setting does not make use of frequency scaling besides Turbo. So the CPU runs at 2.3GHz at the very minimum and frequently reaches 2.6GHz. So if you buy an Opteron 6200 server, it is strongly advised to chose the "High Performance" setting. Under light load, the balanced power manager saves a few percentage of power running idle, but in our opinion, it is not worth the large performance degradation. Notice also that the Xeon hardly suffers from the same problem with the exception of the AES-NI enabled TrueCrypt bench, and even then the performance impact is significantly lower.

In a nutshell: the power policy "Balanced" strongly favors the Xeon as the performance impact is non-existent or much lower. Let us see some raw performance numbers.

Measuring Real-World Power Consumption, Part Two Rendering Performance: Cinebench
Comments Locked

106 Comments

View All Comments

  • mino - Wednesday, November 16, 2011 - link

    IT had most likely to do with you running it on NetBurst (judging by no VT-X moniker).

    As much to do with VT-X as with a crappy CPU ... wiht bus architecture ah, thank god they are dead.
  • JustTheFacts - Wednesday, November 16, 2011 - link

    Please explain why there is no comparison between the latest AMD processors to Intel's flagship two-way server processors: the Intel Westmere-EX e7-28xx processor family?

    Lest you forgot about them, you can find your own benchmarks of this flagship Intel processor here: http://www.anandtech.com/show/4285/westmereex-inte...

    Take the gloves off and compare flagship against flagship please, and then scale the results to reflect the price differece if you have to, but there's no good reason not to compare them that I can see. Thanks.
  • duploxxx - Thursday, November 17, 2011 - link

    Westmere EX 2sockets is dead, will be killed by own intel platform called romley which will have 2p and 4p.

    it was a stupid platform from the start and overrated by sales/consultants with there so called huge memory support.
  • aka_Warlock - Wednesday, November 16, 2011 - link

    I think you should have done a more thorough VM test than you did. 64GB RAM?
    We all know single threaded performance is weak, but I still feel the server are underutilized in your test.

    These CPU's are screaming heavy multi threading workloads. Many VM's. Many vCPU's.

    What would the performance be if you had, say, at least 192GB of RAM and 50 (maybe more) VM's on it?

    And offcourse, storage should not be a bottleneck.

    I think this is where his 8modules/16threads cpu would shine.
    A dual socket rack/blade. 16modules/32 threads.
    Loads of RAM and a bounch of VM's.
  • iwod - Wednesday, November 16, 2011 - link

    It is power hungry, isn't any better then Intel, and it is only slightly cheaper, at the cost of higher electricity bill.

    So unless with some software optimization that magically show AMD is good at something, i think they are pretty much doomed.

    It is like Pentium 4, except Intel can afford making one or two mistakes, but not with AMD.
  • mino - Wednesday, November 16, 2011 - link

    Then the article served its purpose well.
  • SunLord - Wednesday, November 16, 2011 - link

    So is the AMD system running 8GB DDR3-1600 DIMMS or 4GB DDR3-1333? Because you list the same DDR3-1333 model for both systems and if the Server supports 16 DIMMs well 16*4 is 64GB
  • JohanAnandtech - Thursday, November 17, 2011 - link

    Copy and paste error, Fixed. We used DDR-3 1600 (Samsung)
  • Johnmcl7 - Wednesday, November 16, 2011 - link

    I have wondered about this, with more cores per socket and virtualisation (organising new set of servers and buying far less hardware for the same functionality) so I'd have thought in total less server hardware is being purchased. Clearly that isn't the case though, is the money made back from more expensive servers?

    John
  • bruce24 - Wednesday, November 16, 2011 - link

    While sure which each new generation of server you need much less hardware to do the same amount of work, however worldwide people are looking for servers to do much more work. Each year companies like Google, Facebook, Amazon, Microsoft and Apple add much more computing power than they could get by refreshing their current servers.

Log in

Don't have an account? Sign up now