Video Capture Quality

The iPhone 4 shot excellent quality 720p30 video and remained arguably the best in that category for a considerable run. Recently though it has been outclassed by smartphones that are shooting 1080p30 with impressive quality which record 720p30 just as well. The 4S catches back up on paper and likewise can capture video at 1080p30. Like every prior iDevice, there are no toggles to change video capture size - it’s always at the device’s maximum quality - 1080p30. Apple also made note of their own gyro-augmented electronic stabilization which the 4S brings. Practically every other smartphone we’ve seen has likewise included some electronic stabilization which leverages the pixels around the target 1080p or 720p area.

We’ve captured videos from the 4S in the dual camera mount alongside the 4, an SGS2, and a reference Canon Vixia HF11 for comparison. I also shot a low light comparison between the 4 and 4S. Showing the differences in video between all of those is something of a challenge, so I’ve done a few different things. First, you can grab the native format 4S versus 4 videos here (442 MB) and the 4S versus SGS2 video here (289 MB).

It’s hard to compare those side by side unless you have multiple instances of VLC open and hit play at the same time, so I also combined and synchronized the comparison videos side by side. The frame is 4096x2048 so we can see actual 1080p frames side by side. Though I realize 4K displays are hard to come by, you at least can see full size images which I’ve synchronized.

It’s readily apparent just how much more dynamic range the 4S has over the 4 when you look at the highlights and dark regions. In addition, the 4S does indeed have better white balance, whereas the 4 changes its white balance a few times as we pan left and right through different levels of brightness and ends up looking blue at the very end of the first clip.

Then comes the SGS2 comparison, and I start out with some unintentional shake where you can really see the 4S’ anti shake kick in. I considered the SGS2’s electronic anti shake pretty good, however its narrower field of view in 1080p capture exacerbates the shaking. Subjectively the two are pretty closely matched in terms of video quality, but the SGS2 runs its continual auto focus a lot and has a few entirely unfocused moments. The 4S’ continual auto focus is much more conservative and often requires a tap to refocus.

The Vixia HF11 comparison gives you an idea how the 4S compares to a consumer level camcorder shooting in its own maximum quality mode. I’d say the 4S actually gives it a run for its money, surprisingly enough, though the 4S (like every smartphone) still has rolling shutter in movement. Finally I shot a low light side by side with the 4S and 4, again white balance is better, but the 4S video in this mode looks a bit noisier than the 4. In addition, the 4S exhibits more lens flaring (something I noticed while shooting stills as well) than the 4.

Subjectively video quality from the 4S is very good, but it falls short in other ways. The 4S shoots video at 1080p30 baseline with 1 reference frame at 24 Mbps, with single channel 64 Kbps AAC audio. If you’ve been following our smartphone reviews, you’ll know that although this is the highest bitrate of any smartphone thus far (Droid 3 we’ve seen at 15 Mbps, SGS2 at 17 Mbps), it’s just baseline and not high profile we’ve seen on Exynos 4210 or OMAP4. In addition, two channel audio is becoming a new norm.

Media Info from video shot on the iPhone 4S

The result is that Apple is compensating for lower encoder efficiency (quality per bit) by encoding their 1080p video at a higher bitrate. Other players are getting the same quality at lower bitrates by using better high profile encoders. We dug a little deeper with some stream analysis software, and it appears that Apple’s A5 SoC is using the same encoder as the A4, complete with the same CAVLC (as opposed to CABAC which the other encoders in OMAP4 or Exynos 4210) and efficiency per frame size. It’s just a bit unfortunate, since the result is that video shot on the 4S will use ~40% more space per minute compared with 1080p30 video shot on other platforms (180 MB for 1 minute on the 4S, 128 MB for 1 minute on the SGS2, and 113 MB for 1 minute on OMAP4).

iPhone 4S iPhone 4

One last thing to note is that Apple roughly keeps the same cropped field of view size as the 4 on the 4S when shooting video. You can see this behavior in the rollover above. The 4S field of view is just slightly narrower than the 4. Note that the actual area reported from the sensor when in video capture mode is almost always a crop (sometimes with a 2x2 binning) of the full sensor size with some pixels around the frame for image stabilization.

Still Image Capture Quality Battery Life
Comments Locked

199 Comments

View All Comments

  • Davabled - Monday, October 31, 2011 - link

    With Field test enabled, do numbers closer to zero indicate a better connection? (I'm referring to the numbers that replace the bars in the upper left corner)
  • Anand Lal Shimpi - Monday, October 31, 2011 - link

    Correct :)

    Take care,
    Anand
  • Formul - Monday, October 31, 2011 - link

    why the huge drop from iPad 2 to iPhone 4S in the GL benchmark pro? its only about 30% performance .... any explanation?
  • Anand Lal Shimpi - Monday, October 31, 2011 - link

    Because the number was incorrect :-P Fixed now :)

    Take care,
    Anand
  • ZebuluniteX - Monday, October 31, 2011 - link

    Great review as always Anand!

    In addition to the GL benchmark pro results Formul mentioned, I was also surprised to see the Motorola Droid RAZR for some reason do far better than other Gingerbread-based Android smartphones. It is listed as using different version of Android (2.3.5 vs 2.3.4 or older), but given that very similar results were shown between the iPhone 4S and Honeycomb-running Galaxy Tab 8.9 in your 'iPhone 4S Preliminary Benchmarks' article (where the 4S was a bit slower than the Galaxy Tab in SunSpider, and marginally faster in BrowserMark), I'm guess those are just mislabeled Galaxy Tab results. Is that the case?
  • Anand Lal Shimpi - Monday, October 31, 2011 - link

    Thank you - be sure to thank Brian Klug as well, he really did the bulk of the heavy lifting here. I just popped in to talk about silicon and battery life.

    The RAZR numbers are what we ran at the RAZR announcement: http://www.anandtech.com/show/4981/motorola-droid-...

    The improvement is likely due to an updated browser from Motorola. I included those numbers effectively as a placeholder until Ice Cream Sandwich arrives :)

    Take care,
    Anand
  • ZebuluniteX - Tuesday, November 1, 2011 - link

    Ah, thanks for the clarification, I missed that article. Hmm, that's interesting that, apparently, Motorola "ported" Honeycomb or Ice Cream Sandwich's browser optimizations to Gingerbread (or at least I assume that's what happened)...

    I'm in the market for a smartphone, and while I was leaning towards the 4S since I already am in the Apple ecosystem via an iPod Touch 2G, before pulling the trigger I wanted to read the Anandtech take on it. The review was excellent as always - thanks again to both you and Brian!
  • Formul - Monday, October 31, 2011 - link

    that was fast! i knew something was not right as there was no mention of this in the text :-)

    thanks for another great review, keep up the good work! :-)
  • zanon - Monday, October 31, 2011 - link

    The article wrote "The expectation that Apple will always deliver more than just a hardware upgrade is likely what made Siri a 4S exclusive."
    While only time will tell for sure, it seems quite possible that graduated ramp up had a bigger role to play here. As you say, most of the heavy duty lifting for Siri is going on server-side, and in turn local processing needs aren't too bad. However, the natural flip side of that of course is that the server-side infrastructure is required for the service to work at all, and resources aren't unlimited there either. Even with it limited purely to 4S users, Siri still had some availability problems in the first few days as millions activated and tried to user it simultaneously. It's not hard to imagine what would have happened if every single one of the tens of millions able to upgrade to iOS 5 *also* tried to start using it immediately. Apple has built a huge data center and that's all well and good, but nothing substitutes for actual working experience when it comes to massive software services.

    By limiting the initial rollout, Apple can do performance profiling, get an idea of average loads after initial "let's try it" dies down, and so forth. Staggering a rollout also means being able to plan for the general load rather then suffering the classic and well known double-bind of
    A) Building for a peak load, and ending up being left with a lot of extraneous hardware that barely gets used.
    B) Building for the average, then suffering from embarrassing and headline generating outages for a week or two.

    It's true they could just decide to keep it 4S only, but given they are still selling the iPhone 4, and probably make plenty of profit on that now very mature device, I think there is a decent chance they'll roll it out to a wider audience down the road.

    Also, a few typos:
    Page 2:
    I think the phrase is "pretty much par for the *course* for Apple..." rather then "par for the case".

    Pg 9, WiFi:
    "...newest WLAN, Bluetooth, and FM *cobo* chip" should I think be "combo".

    Pg 15:
    ...4S, without a (big blank, presumably some sentence was supposed to go here?)

    Pg 16:
    "aren't simply *academical*" should be "academic".

    Again, great review, thank you.
  • Anand Lal Shimpi - Monday, October 31, 2011 - link

    That's a very good point, I will add it to the discussion. The sinister view is to assume Apple did it to differentiate, the balanced view takes into account infrastructure, which is exactly what you did here :)

    And thanks for the corrections :)

Log in

Don't have an account? Sign up now