ASUS P8Z68-V PRO: UEFI

The ASUS UEFI hasn't changed much since we reviewed the P8P67 PRO, of big help to me is the addition of a screenshot button which saves a BMP of the current screen to USB stick. I found out that you can't save it to an NTFS USB stick—it has to be a FAT based file system.

One big departure from other motherboard manufacturers is that by default, ASUS have AHCI mode enabled for the SATA ports, which helps take advantage of AHCI capable SATA drives. Most motherboards default this to IDE for backwards compatibility, but most users do not check the BIOS for IDE/AHCI mode, and thus could be losing valuable performance (15-20% in sequential) if not enabled. Interestingly, ASUS note this in their manual and suggest that Windows XP users currently in IDE mode download a driver and install via floppy disk—despite this motherboard not having a Floppy port available...

The main screen is the ASUS EZ mode. This is the one screen that puts ASUS ahead of the field in terms of UEFI development—on this one screen, I can see my CPU, the BIOS version, temperatures, fan speeds and the boot priority. If I did not want to venture further into the UEFI, I also have handy options for lower power or high performance modes at the click of a button.

First step into the main BIOS utility gives a lesser amount of similar information, typical of any first screen for a non-graphical BIOS.

The main set of overclocking options here haven't changed from the P8P67 PRO, apart from the inclusion of the iGPU overclock settings when the iGPU is in use. If only the dGPU is in use, the iGPU settings do not show up here. The main screen of interest in the UEFI is the System Agent Configuration:

This is how we select/deselect Virtu. To enable Virtu, the iGPU Multi-Monitor option must be set to 'Enabled'. For d-Mode, the 'Initiate Graphics Adapter' should be in the PCIe/PCI option, and the monitor connected to a dGPU. For i-Mode, change the option to 'iGPU', and on reboot connect the monitor to the integrated graphics connectors on the IO Panel.

As always with motherboards using the Marvell SATA 6Gbps controller, if you're not using it, save some boot time by disabling it in the BIOS.

ASUS P8Z68-V PRO: Overclocking

As we have the option of CPU and iGPU overclocking, I'll go through my process of doing each one individually. Combining both overclocks is a grey area, as increasing the overclock for one could decrease the overclock for the other. For the most part, people using a dGPU will overclock the CPU, and those using the iGPU may want the iGPU overclocked instead.

CPU Overclock

As the ASUS system has its OC Tuner, I gave that a spin first. It has two modes—Fast and Extreme. Fast looks for the best overclock at boot time with coarsely grained values—on this board it gave a 42x multiplier and 103.5 BCLK for a 4347 MHz overclocked speed. This is better than what we got on the MSI P67A-GD65 at the touch of a button. The Extreme mode initiates the fast mode first, then in the OS attempts to increase the multiplier and the BCLK by stress testing each option until it fails. Unfortunately, it could not increase either before giving the blue screen of death, giving another overclock of 4347 MHz.

With this in mind, I jumped into the TurboV section of the AI Suite II software, and started adjusting some sliders. I upped the voltage to 1.42 V (my self-imposed safe OC limit for these reviews on a Corsair H50-1), reduced the BCLK to 100.0 and set the multiplier at 48x. The OS didn't crash, so I slowly increase the multiplier to 50x which successfully ran the multi-threaded 3D Movement benchmark, but gave load voltage readings of 1.544 V. On upping the multiplier to 51x, the OS crashed and rebooted.

On entering the BIOS after this, I noticed it was set at 42x and 103.5 MHz, meaning that the TurboV software did not apply my overclock in the BIOS. I adjusted the overclock to 46x and 100MHz and the OS booted and was stable, and it was at 47x as well, but 48x crashed and rebooted. Back at 47x, I achieved a 101.1 MHz BCLK (4750 MHz overall), which gave a multi-threaded 3D Movement result of 483.61. Above 101.1 BCLK resulted in a crash to reboot.

I decided to reduce the multiplier to 46x and see if we could increase the BCLK to match the overall frequency. 103.5 MHz was the best stable BCLK, giving an overall overclock of 4764 MHz.

For the 4764 MHz OC results using the 3D Movement benchmark, in single threaded mode, for a 28.8% OC (from 3700 MHz to 4764 MHz), a 30.1% increase in the score was observed (112.95 to 146.90) In multi threaded mode, for a 40.1% OC (from 3300 MHz to 4764 MHz), a 39.4% increase in the score was observed (347.68 to 484.81).

iGPU Overclock

Going back to a stock CPU frequency, I applied the OC Tuner to the iGPU, and it came back with 1450 MHz. The integrated graphics on this processor have seen 1800 MHz, so I used TurboV to increase the frequency.

TurboV allows a frequency change and an iGPU voltage offset. I upped the speed to 1700 MHz, and the system required a reboot to apply the new frequency. The TurboV came back with an automatic voltage offset of +150 mV, and the board successfully ran the Metro 2033 benchmark at 21.00 frames per second. The iGPU speed was only able to be increased in steps of 50 MHz, and the following results were observed:

  • 1700 MHz, +150 mV offset, 21.00 FPS
  • 1800 MHz, +250 mV offset, 22.21 FPS
  • 1900 MHz, +250 mV offset, 22.81 FPS
  • 2000 MHz, +250 mV offset, 22.62 FPS
  • 2100 MHz, fail

Similar to what we saw on some of the H67 boards, after a certain iGPU speed, no actual improvement occurs in terms of performance. I had attributed this to some form of throttling, but after disabling that feature in the BIOS, statistically similar results were obtained. Thus for the benchmarks, I settled on a 1900 MHz overclock, which is technically the best iGPU overclock for a motherboard we've seen on this chip. This could be down to the power delivery—as Z68 has to cater for both CPU and GPU overclock, a better power delivery system is in place.

ASUS P8Z68-V PRO: Board Features, In The Box and Software Test Setup, Power Consumption and Temperatures
POST A COMMENT

95 Comments

View All Comments

  • fr500 - Thursday, May 12, 2011 - link

    Not any new crashes but there are crashes now and them with certain nvidia driver versions on TF2 for instance. With an aditional layer on top it makes it worse I guess...

    Also I said that about control panels because of techreport's review but it seems they didn't know about d mode
    Reply
  • AnnihilatorX - Thursday, May 12, 2011 - link

    Anand noted that Intel said (when virtu didn't exist), to use QuickSync in Z68, one needs to use 2 monitors.

    So basically you can have 2 separate monitors, one connection from discrete and one from onboard.
    Reply
  • L. - Thursday, May 12, 2011 - link

    I'm pretty sure you can come up with more complex and useless examples of using relatively bad technology, namely Lucid.

    As long as you have a real gpu, you should not be using the IGP at all, that is not going to change anytime soon as 7% of a real GPU >>> anything Intel ever made.

    Not to worry though, Virtu will be gone very soon, like Hydra.

    "Normally", you should be able to send the transcoding to your GPU and have 3d / screen input at the same time.

    In other words : intel IGP bad except if you don't have anything else, virtu bad always unless your GPU is really bad too (wtf?).

    This will become more interesting when AMD starts selling Llano, as llano's gpu will be much stronger than Intel's IGP and using both ressources efficiently (discrete+igp) will make a real difference.
    Reply
  • fr500 - Thursday, May 12, 2011 - link

    The whole deal with this is QuickSync is really fast for transcoding.

    I don't like the idea of Hydra either so I think using a spare input from your monitor could work, it would still be detected even if the input is not the current active one and even if it doesn't get detected you could just select the other input, do your transcoding and be done with it.
    Reply
  • cbgoding - Wednesday, May 11, 2011 - link

    So 1.42V was your safe limit, but under load it jumped to 1.544 V?

    What the hell?
    Reply
  • AnnihilatorX - Thursday, May 12, 2011 - link

    He wrote 'but'. He's suggesting a bug in the TurboV software Reply
  • cbgoding - Friday, May 13, 2011 - link

    alright, makes sense. Guess I'll never use TurboV, I'd shit a brick if i had a .124V spike. Reply
  • L. - Thursday, May 12, 2011 - link

    My mobo does that ... although I went a bit hard on the pencilmod on purpose - which gives me a vload > vidle (although very close, it's about .025 more). Reply
  • DBissett - Thursday, May 12, 2011 - link

    Sorry for grammar policing but some grammar is so bad it makes reading otherwise good articles impossible. "Asus" and "Intel" are companies, singular nouns, and require singular verbs. To say "Asus have" and "Intel have" is not only technical incorrect but just plain reads very badly. "Asus has...." and "Intel has...." is the correct grammatical form. Or if you have to use plural verbs then try "People at Asus have..." for example, and now you've got a plural subject.

    Dave
    Reply
  • IanCutress - Friday, May 13, 2011 - link

    Hi Dave,

    This is one of the (many) differences between British and American English. I attempt to write in an American style for AnandTech, but as I am British, a few things scrape through the net.

    All the best,
    Ian
    Reply

Log in

Don't have an account? Sign up now