Power Extremes: Idle and Full Load

Idle and full load power measurements are hardly relevant for virtualized environments but they offer some interesting datapoints. In the first test we report the power consumption running vApus Mark II, which means that the servers are working at 85-98% CPU load. We measured with four tiles, but we also tested the Xeon with five tiles (E7-4870 5T).

We test with redundant power supplies working, so the Dell R815 uses 1+1 1100W PSUs and the QSSC-4R uses 2+2 850W PSU. Remember that the QSSC server has cold redundant PSUs, so the redundant PSUs consume almost nothing. There's more to the story than just the PSU and performance, of course: the difference in RAS features, chassis options, PSU, and other aspects of the overall platform can definitely impact power use, and that's unfortunately something that we can't easily eliminate from the equation.

vApus Mark II Full Power

The Quad E7-4870 Xeons save about 7.5% power (894 vs 966) compared to their older brothers. The power consumption numbers look very bad compared to the AMD system in absolute terms. However, with five tiles the Quad Xeon E7 delivers 63% higher performance while consuming 57% more power. We can conclude that at very high loads, the Xeon E7 performance/watt ratio is quite competitive.

When we started testing at idle, we test with both the Samsung 1333MHz 4GB 1.35V (low power) DDR3 registered (M393B5273DH0) and 1.5V DIMMs (M393B5170FH0-H9).

vApus Mark II Idle Power

Despite the fact that the Xeon X7560 does not support low power DIMMs officially, it was able to save about 5% of the total power use. The Xeon E7's more advanced memory controller was able to reduce power by 8%. But the picture is clear: if your servers runs idle for large periods of time, the quad Opteron server is able to run on a very low amount of power, while the quad Xeon server needs at least 600W if you do not outfit it with low power 1.35V DIMMs. How much of the power difference comes from the platform in general and how much is specific to the servers being tested is unfortunately impossible to say without testing additional servers.

As we have stated before, maximum power and minimum power are not very realistic, so let us check out our real world scenario.

Virtualized Performance: Response Time Real-World Power
POST A COMMENT

62 Comments

View All Comments

  • Shadowmaster625 - Friday, May 20, 2011 - link

    Yeah but what you gonna do with those two extra Xeons? You cant just bolt them to the side of that two socket server. There is a huge price divide between 2 and 4 socket servers. Your numbers are totally disingenuous. You'd need to drop an extra 6 grand just to move into the 4 socket platform. You can see that right on HP's site. For $12,000 more you get 2 extra sockets, and all four chips get upgraded to 4850s. The upgrade is worth 4 grand. You also get a memory upgrade to 128GB. When you also subtract a couple grand for that 64GB of ram upgrade, you're left with 6 grand for the dual-to-quad socket upgrade.

    btw you posted the same link twice.
    Reply
  • jihadjoe - Saturday, May 21, 2011 - link

    Spec sheet, from GP's link:
    http://h18000.www1.hp.com/products/quickspecs/1366...

    It's a 4-socket server but 'as configured' comes with two processors. You put those extra xeons in the two extra sockets inside it.
    Reply
  • Shadowmaster625 - Monday, May 23, 2011 - link

    So why is the 4 core server $6000 more expensive, when factoring out the added parts? Is that what they charge just to install two processors? Is there really that much waste in the IT world? If so then it is no wonder IT is being outsourced at a breakneck pace. Any IT professional who would pay HP 6 grand just to install a couple cpu's needs to be "downsized" immediately. Reply
  • JarredWalton - Monday, May 23, 2011 - link

    The AMD server is here:
    http://h10010.www1.hp.com/wwpc/us/en/sm/WF06b/1535...

    It only supports 32 DIMMs vs. 64 DIMMs, as another disadvantage.

    As L. points out below, the Intel setup is also using the E7-4830, which is 8 core instead of 10. And then the upgraded Intel setup with 10-core CPUs also bumps up to 128GB RAM and 4 x 1200W PSUs and ends up at $26819 (with 4 x E7-4850) -- note that the AMD setup already had 4 x 1200W PSUs.

    So once again, we're back to comparing apples and pears -- similar in many ways, but certainly not identical. And for that very reason, you can't even begin to make statements like L.'s "AMD wins on perf/watt/dollar" because we don't have any figures for how much power such an AMD setup actually consumes compared to the Intel setup. It might be more power than our review servers, or it might be less, but it will almost certainly be different.

    My main point is that we're not even remotely close to paying 2x as much for an Intel server vs. AMD server. If you want to compare the cheapest quad-Opteron 6174 to a higher quality quad-Xeon, yes, the pricing will be vastly different; that's like pointing out that a luxury sedan costs more than the cheapest 4-door midsize sedan.
    Reply
  • L. - Monday, May 23, 2011 - link

    I think I saw that comment quite a few times .. but I only just realized there was a big problem with your numbers :
    The processors listed here are e7-4830.

    Those processors are 8 cores (not 10 like 4870) and 2.13Ghz (not 2.4Ghz like 4870).

    Assuming linear scaling (although this is absolutely not the case) you would get the same perf/watt as the above model, and a total sap score of 52,518 vs 47,420 for the AMD 6174 (10% more).

    And the price is 18% more .. looks like perf/watt/dollar crown goes to AMD again.

    Other tests are clearly impossible to guesstimate and clearly the SAP test was where the e7 was getting a better advantage compared to vAPUs mark II test.

    So yes, the argument stands that even though Intel has higher-priced extreme components, anything they have in AMD-performance-range is more expensive than AMD's option, quite logical with AMD as the underdog so far.

    BUT, as we're showing benchmark of the flagship vs flagship, there tends to be misconceptions about the rest of the product line, just like here "20k more expensive" or "so much better cpu from intel" or other random bullcrap.
    Reply
  • spanky_mcsoreass - Thursday, May 19, 2011 - link

    What software does the average business need to run on a ridiculous number of cores? The only common application that comes to mind is internet facing Linux/Apache servers, and Linux/Apache are free(anyone dumb enough to pay for and use Windows/IIS deserves what they get).

    Most businesses just need a lot of VMs running their various low intensity apps, and dedicated NAS or SAN devices. Magny-Cours Opteron devices do either just as well or better than Xeon, and using VMs to run licensed apps won't result in a penalty for software licensing.
    Reply
  • ggathagan - Thursday, May 19, 2011 - link

    Then this really isn't for "most businesses", is it?

    This is Intel's new flagship.
    As such I do not expect it to be a good fit for many businesses out there.

    That does not make it any less interesting to review, since there are businesses that *can* make use of it.
    Further, the same technology will end up in the lower tier CPU's as well.
    Reply
  • dominique_straws_con - Thursday, May 19, 2011 - link

    No, this is just another CPU that *could* be for most businesses, you could use it in the "lots of non-intensive apps running in VMs" scenario(or any other scenario), it's just an exceptionally poor value, and will probably not out-perform Magny-Cours or Bulldozer for most people's real world use. This CPU excels at benchmarking, and that's just about it.

    AMD got server CPUs right, it's all about how many cores you can fit on a rack.
    Reply
  • L. - Friday, May 20, 2011 - link

    How many cores you can fit on a rack, with what TDP ;)

    When you have to WC your rack, you have a problem - most of the time anyway.
    Reply
  • Casper42 - Thursday, May 19, 2011 - link

    You know nothing about Enterprise level IT.

    Your Example of Internet Facing Apps and Linux Apache is the EXACT opposite design methodology of how things work in the real world.

    In the real world, internet apps run on the cheapest of the cheap servers and companies just use a ton of them behind a Load Balancer.

    Now the Database serving those web servers in the background, running Oracle RAC or MS SQL or even MySQL on the other hand will make use of all these cores and memory assuming you have a large database.

    The examples given RIGHT IN THE ARTICLE about things like SAP are probably the most common thing run on these Big Iron type boxes.

    If it helps prove my point any further, over at HP on the Sales side of things, the guys that have been selling RISC based machines under the HP Integrity/Superdome name for something like a decade, are now also being paid commission when they sell the DL580/DL980 G7 servers. Those 2 models use the Nehalem EX and will soon be using the Westmere EX.
    So the type of Apps running on these CPUs are often the same things Fortune 100 companies used to run on Integrity/Sun/IBM Power/etc
    Reply

Log in

Don't have an account? Sign up now