The Vertex 3 120GB

Whenever we review a new SSD many of you comment asking for performance of lower capacity drives. While we typically publish the specs for all of the drives in the lineup, we're usually only sampled a single capacity at launch. It's not usually the largest, but generally the second largest and definitely an indicator of the best performance you can expect to see from the family.

Just look at the reviews we've published this year alone:

Intel SSD 510 (240GB)
Intel SSD 320 (300GB)
Crucial m4 (256GB)

While we always request multiple capacities, it normally takes a little while for us to get those drives in.

When OCZ started manufacturing Vertex 3s for sale the first drives off of the line were 120GB, and thus the first shipping Vertex 3 we got our hands on was a more popular capacity. Sweet.

Let's first look at the expected performance differences between the 120GB Vertex 3 and the 240GB drive we previewed earlier this year:

OCZ Vertex 3 Lineup
Specs (6Gbps) 120GB 240GB 480GB
Max Read Up to 550MB/s Up to 550MB/s Up to 530MB/s
Max Write Up to 500MB/s Up to 520MB/s Up to 450MB/s
4KB Random Read 20K IOPS 40K IOPS 50K IOPS
4KB Random Write 60K IOPS 60K IOPS 40K IOPS
MSRP $249.99 $499.99 $1799.99

There's a slight drop in peak sequential performance and a big drop in random read speed. Remember our discussion of ratings from earlier? The Vertex 3 was of course rated before my recent conversations with OCZ, so we may not be getting the full picture here.

Inside the 120GB Vertex 3 are 16 Intel 25nm 64Gbit (8GB) NAND devices. Each device has a single 25nm 64Gbit die inside it, with the capacity of a single die reserved for RAISE in addition to the typical ~7% spare area.

The 240GB pre-production drive we previewed by comparison had twice as many 25nm die per package (2 x 64Gbit per NAND device vs. 1 x 64Gbit). If you read our SF-2000 launch article one of the major advantages of the SF-2000 controller has over its predecessor is the ability to activate twice as many NAND die at the same time. What does all of this mean for performance? We're about to find out.

RC or MP Firmware?

When the first SF-1500/1200 drives shipped last year they actually shipped with SandForce's release candidate (RC) firmware. Those who read initial coverage of the Corsair Force F100 drives learned that the hard way. Mass production (MP) firmware followed with bug fixes and threatened to change performance on some drives (the latter was resolved without anyone losing any performance thankfully).

Before we get to the Vertex 3 we have to talk a bit about how validation works with SandForce and its partners. Keep in mind that SandForce is still a pretty small company, so while it does a lot of testing and validation internally the company leans heavily on its partners to also shoulder the burden of validation. As a result drive/firmware validation is split among both SandForce and its partners. This approach allows SF drives to be validated heavier than if only one of the sides did all of the testing. While SandForce provides the original firmware, it's the partner's decision whether or not to ship drives based on how comfortable they feel with their validation. SandForce's validation suite includes both client and enterprise tests, which lengthens the validation time.

The shipping Vertex 3s are using RC firmware from SandForce, the MP label can't be assigned to anything that hasn't completely gone through SandForce's validation suite. However, SF assured me that there are no known issues that would preclude the Vertex 3 from being released today. From OCZ's perspective, the Vertex 3 is fully validated for client use (not enterprise). Some features (such as 0% over provisioning) aren't fully validated and thus are disabled in this release of the firmware. OCZ and SandForce both assure me that the SF-2200 has been through a much more strenuous validation process than anything before it.

Apparently the reason for OCZ missing the March launch timeframe for the Vertex 3 was a firmware bug that was discovered in validation that impacted 2011 MacBook Pro owners. Admittedly this has probably been the smoothest testing experience I've encountered with any newly launched SandForce drive, but there's still a lot of work to be done. Regardless of the performance results, if you want to be safe you'll want to wait before pulling the trigger on the Vertex 3. SandForce tells me that the only difference between RC and MP firmware this round is purely the amount of time spend in testing - there are no known issues for client drives. Even knowing that, these are still unproven drives - approach with caution.

The Test

CPU

Intel Core i7 965 running at 3.2GHz (Turbo & EIST Disabled)

Intel Core i7 2600K running at 3.4GHz (Turbo & EIST Disabled) - for AT SB 2011, AS SSD & ATTO

Motherboard:

Intel DX58SO (Intel X58)

Intel H67 Motherboard

Chipset:

Intel X58 + Marvell SATA 6Gbps PCIe

Intel H67
Chipset Drivers:

Intel 9.1.1.1015 + Intel IMSM 8.9

Intel 9.1.1.1015 + Intel RST 10.2

Memory: Qimonda DDR3-1333 4 x 1GB (7-7-7-20)
Video Card: eVGA GeForce GTX 285
Video Drivers: NVIDIA ForceWare 190.38 64-bit
Desktop Resolution: 1920 x 1200
OS: Windows 7 x64

 

OCZ Listens, Again Random & Sequential Performance
Comments Locked

153 Comments

View All Comments

  • pfarrell77 - Sunday, April 10, 2011 - link

    Great job Anand!
  • ARoyalF - Wednesday, April 6, 2011 - link

    For keeping them honest!
  • magreen - Wednesday, April 6, 2011 - link

    Intro page: "It's also worth nothing that 3000 cycles is at the lower end for what's industry standard..."

    I can't figure out your intent here. Is it worth noting or is it worth nothing?
  • Anand Lal Shimpi - Wednesday, April 6, 2011 - link

    Noting, not nothing. Sorry :)

    Take care,
    Anand
  • magreen - Wednesday, April 6, 2011 - link

    Hey, it was nothing.

    :)
  • vol7ron - Wednesday, April 6, 2011 - link

    Lmao. Magreen, I like how you addressed that.
  • Shark321 - Thursday, April 7, 2011 - link

    On many workstations in my company we have a daily SSD usage of at least 20 GB, and this is not something really exceptional. One hibernation in the evening writes 8 GB (the amount of RAM) to the SSDs. And no, Windows does not write only the used RAM, but the whole 8 GB. One of the features of Windows 8 will be that Windows does not write the whole RAM content when hibernating anymore. Windows 7 disables hibernation by default on system with >4GB of RAM for that very reason! Several of the workstation use RAM-Disks, which write a 2 or 3 GB Images on Shutdown/Hibernate. Since we use VMWare heavily, 1-2 GB is written contanstly all over the day as Spanshots. Add some backup spanshops of Visual Studio products to that and you have another 2 GB.

    Writing 20 GB a day, is nothing unusual, and this happens on at least 30 workstations. Some may even go to 30-40 GB.

    Only 3000 write cycles per cell is the reason why we had several complete failures of SSDs. Three of them from OCZ, one Corsair, one Intel.
  • Pessimism - Thursday, April 7, 2011 - link

    Yours is a usage scenario that would benefit more from running a pair of drives, one SSD and one large conventional hard drive. The conventional drive could be used for all your giant writes (slowness won't matter because you are hitting shut down and walking away) and use the SSD for windows and applications themselves.
  • Shark321 - Friday, April 8, 2011 - link

    HDD slowness does matter! A lot! Loading a VMWare snapshot on a Raptor HDD takes at least 15 seconds, compared to about 6-8 with a SDD. Shrinking the image once a month takes about 30 minutes on a SDD and 3 hours on a HDD!

    Since time is money, HDDs are not an option, except as a backup medium.
  • Per Hansson - Friday, April 8, 2011 - link

    How can you be so sure it is due to the 20GB writes per day?
    If you run out of NAND cycles the drives should not fail (as I'm implying you mean by your description)
    When an SSD runs out of write cycles you will have (for consumer drives) if memory serves about one year before data retention is no longer guaranteed.

    What that means is that the data will be readable, but not writeable
    This of course does not in any way mean that drives could not fail in any other way, like controller failure or the likes

    Intel has a failure rate of ca 0.6% Corsair ca 2% and OCZ ca 3%

    http://www.anandtech.com/show/4202/the-intel-ssd-5...

Log in

Don't have an account? Sign up now