The NAND Matrix

It's not common for SSD manufacturers to give you a full list of all of the different NAND configurations they ship. Regardless how much we appreciate transparency, it's rarely offered in this industry. Manufacturers love to package all information into nice marketable nuggets and the truth doesn't always have the right PR tone to it. Despite what I just said, below is a table of every NAND device OCZ ships in its Vertex 2 and Vertex 3 products:

OCZ Vertex 2 & Vertex 3 NAND Usage
  Process Node Capacities
Intel L63B 34nm Up to 240GB
Micron L63B 34nm Up to 480GB
Spectek L63B 34nm 240GB to 360GB
Hynix 32nm Up to 120GB
Micron L73A 25nm Up to 120GB
Micron L74A 25nm 160GB to 480GB
Intel L74A 25nm 160GB to 480GB

The data came from OCZ and I didn't have to sneak around to get it, it was given to me by Alex Mei, Executive Vice President of OCZ.

You've seen the end result, now let me explain how we got here.

OCZ accidentally sent me a 120GB Vertex 2 built with 32nm Hynix NAND. I say it was an accident because the drive was supposed to be one of the new 25nm Vertex 2s, but there was a screwup in ordering and I ended up with this one. Here's a shot of its internals:

You'll see that there are a ton of NAND devices on the board. Thirty two to be exact. That's four per channel. Do the math and you'll see we've got 32 x 4GB 32nm MLC NAND die on the PCB. This drive has the same number of NAND die per package as the new 25nm 120GB Vertex 2 so in theory performance should be the same. It isn't however:

Vertex 2 NAND Performance Comparison
  AT Storage Bench Heavy 2011 AT Storage Bench Light 2011
34nm IMFT 120.1 MB/s 155.9 MB/s
25nm IMFT 110.9 MB/s 145.8 MB/s
32nm Hynix 92.1 MB/s 125.6 MB/s

Performance is measurably worse. You'll notice that I also threw in some 34nm IMFT numbers to show just how far performance has fallen since the old launch NAND.

Why not just keep using 34nm IMFT NAND? Ultimately that product won't be available. It's like asking for 90nm CPUs today, the whole point to Moore's Law is to transition to smaller manufacturing processes as quickly as possible.

Why is the Hynix 32nm NAND so much slower? That part is a little less clear to me. For starters we're only dealing with one die per package, we've established can have a negative performance impact. On top of that, SandForce's firmware may only be optimized for a couple of NAND devices. OCZ admitted that around 90% of all Vertex 2 shipments use Intel or Micron NAND and as a result SandForce's firmware optimization focus is likely targeted at those NAND types first and foremost. There are differences in NAND interfaces as well as signaling speeds which could contribute to performance differences unless a controller takes these things into account.


25nm Micron NAND

The 25nm NAND is slower than the 34nm offerings for a number of reasons. For starters page size increased from 4KB to 8KB with the transition to 25nm. Intel used this transition as a way to extract more performance out of the SSD 320, however that may have actually impeded SF-1200 performance as the firmware architecture wasn't designed around 8KB page sizes. I suspect SandForce just focused on compatibility here and not performance.

Secondly, 25nm NAND is physically slower than 34nm NAND:

NAND Performance Comparison
  Intel 34nm NAND Intel 25nm NAND
Read 50 µs 50 µs
Program 900 µs 1200 µs
Block Erase 2 µs 3 µs

Program and erase latency are both higher, although admittedly you're working with much larger page sizes (it's unclear whether Intel's 1200 µs figure is for a full page program or a partial program).

The bad news is that eventually all of the 34nm IMFT drives will dry up. The worse news is that the 25nm IMFT drives, even with the same number of NAND devices on board, are lower in performance. And the worst news is that the drives that use 32nm Hynix NAND are the slowest of them all.

I have to mention here that this issue isn't exclusive to OCZ. All other SF drive manufacturers are faced with the same potential problem as they too must shop around for NAND and can't guarantee that they will always ship the same NAND in every single drive.

The Problem With Ratings

You'll notice that although the three NAND types I've tested perform differently in our Heavy 2011 workload, a quick run through Iometer reveals that they perform identically:

Vertex 2 NAND Performance Comparison
  AT Storage Bench Heavy 2011 Iometer 128KB Sequential Write
34nm IMFT 120.1 MB/s 214.8 MB/s
25nm IMFT 110.9 MB/s 221.8 MB/s
32nm Hynix 92.1 MB/s 221.3 MB/s

SandForce's architecture works by reducing the amount of data that actually has to be written to the NAND. When writing highly compressible data, not all NAND devices are active and we're not bound by the performance of the NAND itself since most of it is actually idle. SandForce is able to hide even significant performance differences between NAND implementations. This is likely why SandForce is more focused on NAND compatibility than performance across devices from all vendors.

Let's see what happens if we write incompressible data to these three drives however:

Vertex 2 NAND Performance Comparison
  Iometer 128KB Sequential Write (Incompressible Data) Iometer 128KB Sequential Write
34nm IMFT 136.6 MB/s 214.8 MB/s
25nm IMFT 118.5 MB/s 221.8 MB/s
32nm Hynix 95.8 MB/s 221.3 MB/s

It's only when you force SandForce's controller to write as much data in parallel as possible that you see the performance differences between NAND vendors. As a result, the label on the back of your Vertex 2 box isn't lying - whether you have 34nm IMFT, 25nm IMFT or 32nm Hynix the drive will actually hit the same peak performance numbers. The problem is that the metrics depicted on the spec sheets aren't adequate to be considered fully honest.

A quick survey of all SF-1200 based drives shows the same problem. Everyone rates according to maximum performance specifications and no one provides any hint of what you're actually getting inside the drive.

SF-1200 Drive Rating Comparison
120GB Drive Rated Sequential Read Speed Rated Sequential Write Speed
Corsair Force F120 285 MB/s 275 MB/s
G.Skill Phoenix Pro 285 MB/s 275 MB/s
OCZ Vertex 2 Up to 280 MB/s Up to 270 MB/s

I should stop right here and mention that specs are rarely all that honest on the back of any box. Whether we're talking about battery life or SSD performance, if specs told the complete truth then I'd probably be out of a job. If one manufacturer is totally honest, its competitors will just capitalize on the aforementioned honesty by advertising better looking specs. And thus all companies are forced to bend the truth because if they don't, someone else will.

The Real Issue OCZ Listens, Again
Comments Locked

153 Comments

View All Comments

  • martixy - Monday, April 11, 2011 - link

    So... the SSD market is shaping up to the just about the most confusing and volatile market out there.
    At least that's the impression I get from the articles here. I mean you'd probably need your very own market research team if you want to get a good deal on an SSD.
    Meh...
  • gixxer - Monday, April 11, 2011 - link

    So if you have read all the comments up to this point with the OCZ verus Intel debate.

    Where would you spend your money?

    A vertex 3, Intel 320, or Intel 510
  • MamiyaOtaru - Tuesday, April 12, 2011 - link

    it's not scientific, but after looking at the newegg user review averages, not touching anything other than intel
  • tech6 - Monday, April 11, 2011 - link

    Thank you Anand - you're a real asset to the tech community!

    While OCZ has a potentially great product, they are really proving to be their own worst enemy. Until they demonstrate some maturity I will choose an Intel 320 instead. It may not be the newest or fastest but the G1/G2/G3 series drives have so far proven to be reasonably reliable and perform as advertised.
  • ClagMaster - Monday, April 11, 2011 - link

    Seems to me the Intel 510 offers better mainstream performance than the Vertex 3.

    And I also think Intel does a better job with balancing firmware with memory technology, and has better configuration control of what memory is used for their SSD's.

    I think suffering a 20% risk of getting a Vertex 3 SSD with slower memory is too high for what I pay for such a device
  • qax - Wednesday, April 13, 2011 - link

    This sort of commitment can make me wanna buy OCZ next time, thats for sure.
    Although they shipped slow drives, they accept the responsability, and thats a big thing in my world.
    I´ve totaly stopped buying som vendors that are too cheap, resulting in useless/nonexisting support.
    Same reason why i allways buy from a psysical shop and never from internetshops.
    I need psysical adress not too far from my own adress, where i can turn in a faulty product.
    For me an SSD driver will allways be used for OS, programs and games. For space i would have HDD.
    So space on SSD is no concern.
  • javishd - Wednesday, April 13, 2011 - link

    I think I'm not alone here. Waiting to buy after some real comparisons of the $300 120gb range. We look to you for help with the decision! Thanks for your long term commitment to ssd. I've been on board since the x25 g1, and I really appreciate all the info from you guys. I'll keep checking every day hoping....
  • alexb1 - Wednesday, April 13, 2011 - link

    Anand, THANK YOU VERY VERY MUCH!

    Honestly, there is NO ONE ELSE in the IT industry advocating for enthusiast consumers like you... kudos!

    I am A VICTIM of OCZ Marketing of Vertex2, and got a 80GB recently that basically does EXTREMELY POOR compared to ALL benchmarks. To top it all off, it is NOT part of the *recall* drives as its size hasn't been affected with the 25nm transition... so I am just about to return and take a 15% restocking fee.

    Now, my question is... should I even bother looking for a 34nm drive, or one of the newer 25nm drives would just do ok as boot drive in Win7? My MOST CONCERN is reliability and longevity.

    I can either get a F60-A (25nm), F60 (34nm), or OCZ Vertex2 (25nm)... The 25nm being $30-40 CHEAPER!
  • faster - Thursday, April 14, 2011 - link

    Today the Intel 510 250GB drive mentioned in these benchamarks can be had at newegg for $615 (-$40 off promo until 4/19, $575).

    The Egg also has the Revo Drive X2 240GB at $570 (was $680).

    So we as consumers have the new 250 GB 6Gbps SATA3 SSD drives vs. the 240GB PCIE X4 integrated bootable RAID 0 card within $5 of the same price point.

    Certainly a bootable add in card is not a straight comparison to a single SSD drive, but at the same price point, in the cutting edge overpriced enthusiast level, it is a sensible comparison.

    Anandtech should put the RevoX2 in these benchmark charts to show how they measure up. It would be more interesting than comparing a WD Raptor represented by tiny slivers on the performance comparisons. I believe, generally speaking, that the Revo would come away with faster read speeds and be neck in neck with fastest SSD drives on write speeds. AnandTech had or has a RevoDrive that they reviewed in the past. Is that thing still laying around?
  • daidaloss - Thursday, April 14, 2011 - link

    @faster
    I second your petition to Anand to put the Revo2 on the charts, so us, real power user, would have an idea how do SSDs compare with PCI raid cards.

    Also, sure would be interesting to see how do SSD compare to ram drives like the HyperDrive5. Supposedly this thing boots up in 4 seconds. Should be interesting to compare such a system with a modern SSD.

Log in

Don't have an account? Sign up now