Final Words

I didn't really believe that SandForce could pull it off when I first heard how fast the SF-2000 line would be. Even after CES, I didn't really believe the drives would be this good in real world use cases. Consider me pleasantly surprised.

When connected to a good 6Gbps controller, the Vertex 3 Pro is significantly faster than anything else on the market today. Obviously the V3P itself is an unreleased drive so things could change as its competitors show up as well, but the bar has been set very high. The Vertex 3 Pro is the first SSD to really put 6Gbps SATA to good use. In fact I'd say its the first drive that really needs a 6Gbps interface. Whenever you Sandy Bridge owners get replacement motherboards, this may be the SSD you'll want to pair with them.

Even writing incompressible data the Vertex 3 Pro is faster than current SandForce drives running full tilt. The performance gains we see here are generational, not a simple evolutionary improvement. SandForce has also successfully addressed the limited shortcomings of the original SF-1200 controller with regards to writing incompressible data.

Clearly performance isn't going to be a problem with this generation. The real unknowns are how well will the Vertex 3 (non-Pro) perform and how reliable will these drives be? Intel is still king of the hill when it comes to drive reliability, however OCZ has been investing heavily in improving its manufacturing. I suspect that this next SSD war will be fought both along performance and reliability lines. Unfortunately for us, the latter is very difficult to quantify without a significant sample of drives.

With new controllers from SandForce, Intel and Marvell due out this year we're going to see SSD performance go through the roof and SSD prices to continue to fall. We're still a couple months away from knowing exactly what to buy, but if you've been putting off that move to an SSD - 2011 may be the year to finally pull the trigger.

 

AnandTech Storage Bench 2010
Comments Locked

144 Comments

View All Comments

  • sheh - Thursday, February 17, 2011 - link

    Why's data retention down from 10 years to 1 year as the rewrite limit is approached?
    Does this mean after half the rewrites the retention is down to 5 years?
    What happens after that year, random errors?
    Is there drive logic (or standard software) to "refresh" a drive?
  • AnnihilatorX - Saturday, February 19, 2011 - link

    Think about how Flash cell works. There is a thick Silicon Dixoide barrier separating the floating gate with the transistor. The reason they have a limited write cycle is because the Silion dioxide layer is eroded when high voltages are required to pump electrons to the floating gate.

    As the SO2 is damaged, it is easier for the electrons in the floating gate to leak, eventually when sufficient charge is leaked the data is loss (flipped from 1 to 0)
  • bam-bam - Thursday, February 17, 2011 - link

    Thanks for the great preview! Can’t wait to get a couple of these new SDD’s soon.

    I’ll add them to an even more anxiously-awaited high-end SATA-III RAID Controller (Adaptec 6805) which is due out in March 2011. I’ll run them in RAID-0 and then see how they compare to my current set up:

    Two (2) Corsair P256 SSD's attached to an Adaptec 5805 controller in RAID-0 with the most current Windows 7 64-bit drivers. I’m still getting great numbers with these drives, almost a year into heavy, daily use. The proof is in pudding:

    http://img24.imageshack.us/img24/6361/2172011atto....

    (1500+ MB/s read speeds ain’t too bad for SATA-II based SSD’s, right?)

    With my never-ending and completely insatiable need-for-speed, I can’t wait to see what these new SATA-III drives with the new Sand-Force controller and a (good-quality) RAID card will achieve!
  • Quindor - Friday, February 18, 2011 - link

    Eeehrmm.....

    Please re-evaluatue what you have written above and how to preform benchmarks.

    I too own a Adaptec 5805 and it has 512MB of cache memory. So, if you run atto with a size of 256MB, this fits inside the memory cache. You should see performance of around 1600MB/sec from the memory cache, this is in no way related to what your subsystem storage can or cannot do. A single disk connected to it but just using cache will give you exactly the same values.

    Please rerun your tests set to 2GB and you will get real-world results of what the storage behind the card can do.

    Actually, I'm a bit surprised that your writes don't get the same values? Maybe you don't have your write cache set to write back mode? This will improve performance even more, but consider using a UPS or a battery backup cache module before doing so. Same thing goes for allowing disk cache or not. Not sure if this settings will affect your SSD's though.

    Please, analyze your results if they are even possible before believing them. Each port can do around 300MB/sec, so 2x300MB/sec =/= 1500MB/sec that should have been your first clue. ;)
  • mscommerce - Thursday, February 17, 2011 - link

    Super comprehensible and easy to digest. I think its one of your best, Anand. Well done!
  • semo - Friday, February 18, 2011 - link

    "if you don't have a good 6Gbps interface (think Intel 6-series or AMD 8-series) then you probably should wait and upgrade your motherboard first"

    "Whenever you Sandy Bridge owners get replacement motherboards, this may be the SSD you'll want to pair with them"

    So I gather AMD haven't been able to fix their SATA III performance issues. Was it ever discovered what the problem is?
  • HangFire - Friday, February 18, 2011 - link

    The wording is confusing, but I took that to mean you're OK with Intel 6 or AMD 8.

    Unfortunately, we may never know, as Anand rarely reads past page 4 or 5 of the comments.

    I am getting expected performance from my C300 + 890GX.
  • HangFire - Friday, February 18, 2011 - link

    OK here's the conclusion from 3/25/2010 SSD/Sata III article:

    "We have to give AMD credit here. Its platform group has clearly done the right thing. By switching to PCIe 2.0 completely and enabling 6Gbps SATA today, its platforms won’t be a bottleneck for any early adopters of fast SSDs. For Intel these issues don't go away until 2011 with the 6-series chipsets (Cougar Point) which will at least enable 6Gbps SATA. "

    So, I think he is associating "good 6Gbps interface) with 6&8 series, not "don't have" with 6&8.
  • semo - Friday, February 18, 2011 - link

    Ok I think I get it thanks HangFire. I remember that there was an article on Anandtech that tested SSDs on AMD's chipsets and the results weren't as good as Intel's. I've been waiting ever since for a follow up article but AMD stuff doesn't get much attention these days.
  • BanditWorks - Friday, February 18, 2011 - link

    So if MLC NAND mortality rate ("endurance") dropped from 10,000 cycles down to 5,000 with the transition to 34nm manufacturing tech., does that mean that the SLC NAND mortality rate of 100,000 cycles went down to ~ 50,000?

    Sorry if this seems like a stupid question. *_*

Log in

Don't have an account? Sign up now