Putting It All Together

Finally, we have been able to offer you a comparison of real OEM servers. In this article, we tried some new approaches with our testing methods: we measured and compared response times and energy consumption, instead of the usual focus on "throughput" and "maximum/idle power". It is important to take a step back and look at all our benchmark data from the point of view of a server buyer.

Let's start with the quad Xeon 7500 server: the SGI Altix UV 10 or QSSC-4R. Based on our performance numbers alone, we felt that one quad Xeon 7500 server could replace two or more dual Xeon servers as the performance/price was right. The price is about 2.5x higher than a dual Xeon, but you get twice the performance, more expandibility (PCIe and DIMM slots), and superior RAS as bonus. Remember, a Xeon MP with a price/performance ratio that could rival that of a dual Xeon was a first.

But the appearance of the Dell R815 and the high energy consumption make the SGI / QSSC server retreat to its typical target (and very profitable) markets: ERP, databases with large memory footprints where RAS is not a bonus but the top priority. The performance was a pleasant surprise and the power consumption of CPUs was decent. Make sure you populate at least 32 DIMMs, as bandwidth takes a dive at lower DIMM counts.

The power consumption of the platform, especially looking at the idle numbers, remains a weak spot. We know that scalability and availability come with a price, but three times higher energy consumption than a dual socket server is too much to convince us that the quad Xeon platform is an attractive virtualization building block.

The HP Proliant DL380 G7 surprised with better than expected energy consumption and some really clever engineering (CPU cage, cold redundancy, energy management...). The high single threaded performance of the Xeon X5670 leads to low response times in many real world circumstances. At high loads, it is outperformed by the Dell R815 that is hardly more expensive.

With 80% higher DIMM counts and 80% to 85% higher throughput, the Dell PowerEdge R815 surpasses the rival HP DL380 G7 by a large margin, while at the same time costing only 20-30% more and needing just as much rack space. That is amazing value. While the price/performance ratio blew us away, we were also hoping that a single R815 could beat the performance/watt ratio of two HP DL380 G7s by a significant margin. That would have been the cherry on the cake, but it did not happen.

The server is not too blame; rather, the CPUs consume more than the ACP ratings that AMD mentions everywhere. The truth is that the CPUs at high load consume much closer to their TDP numbers than ACP ones. However, the performance per watt ratio of the complete server is still competitive. The lower single-thread performance per core is a disadvantage in applications with complex webpages. We would avoid the low end Opteron 6100s.

The bottom line is that Dell's R815 can replace two HP DL380 G7s at a much lower investment cost, with about the same energy costs and lower management costs. Having to manage half as much physical servers should after all also lower the operation costs. Dell's PowerEdge R815 materializes AMD's promise of the "Value 4P server".

 

My special thanks goes out to Tijl Deneut for his benchmarking assistance.

Response Times In Summary, Pros and Cons
Comments Locked

51 Comments

View All Comments

  • cgaspar - Friday, September 10, 2010 - link

    The word you're looking for is "authentication". Is a simple spell check so much to ask?
  • JohanAnandtech - Friday, September 10, 2010 - link

    Fixed.
  • ESetter - Friday, September 10, 2010 - link

    Great article. I suggest to include some HPC benchmarks other than STREAM. For instance, DGEMM performance would be interesting (using MKL and ACML for Intel and AMD platforms).
  • mattshwink - Friday, September 10, 2010 - link

    One thing I would like to point out is that most of the customers I work with use VMWare in an enterprise scenario. Failover/HA is usually a large issue. As such we usually create (or at least recommend) VMWare clusters with 2 or 3 nodes. As such each node is limited to roughly 40% usage (memory/CPU) so that if a failure occurs there is minimal/0 service disruption. So we usually don't run highly loaded ESX hosts. So the 40% load numbers are the most interesting. Good article and lots to think about when deploying these systems....
  • lorribot - Friday, September 10, 2010 - link

    It would be nice to see some comparisons of blade systems in a similar vein to this article.

    Also you say that one system is better at say DBs whilst the the other is better at VMware, what about if you are running say a SQL database on a VMware platform? Which one would be best for that? How much does the application you are running in the VM affect the comparative performance figures you produce?
  • spinning rust - Saturday, September 11, 2010 - link

    is it really a question, anyone who has used both DRAC and ILO knows who wins. everyone at my current company has a tear come to their eyes when we remember ILO. over 4 years of supporting Proliants vs 1 year of Dell, i've had more hw problems with Dell. i've never before seen firmware brick a server, but they did it with a 2850, the answer, new motherboard. yay!
  • pablo906 - Saturday, September 11, 2010 - link

    This article should be renamed servers clash, finding alternatives to the Intel architecture. Yes it's slightly overpriced but it's extremely well put together. Only in the last few months has the 12c Opteron become an option. It's surprising you can build Dell 815's with four 71xx series and 10GB Nics for under a down payment on a house. This was not the case recently. It's a good article but it's clearly aimed to show that you can have great AMD alternatives for a bit more. The most interesting part of the article was how well AMD competed against a much more expensive 7500 series Xeon server. I enjoyed the article it was informative but the showdown style format was simply wrong for the content. Servers aren't commodity computers like desktops. They are aimed at a different type of user and I don't think that showdowns of vastly dissimilar hardware, from different price points and performance points, serve to inform IT Pros of anything they didn't already know. Spend more money for more power and spend it wisely......
  • echtogammut - Saturday, September 11, 2010 - link

    First off, I am glad that Anandtech is reviewing server systems, however I came away with more questions than answers after reading this article.

    First off, please test comparable systems. Your system specs were all over the board and there were way to many variables that can effect performance for any relevant data to be extracted from your tests.

    Second, HP, SGI and Dell will configure your system to spec... i.e. use 4GB dimms, drives, etcetera if you call them. However something that should be noted is that HP memory must be replaced with HP memory, something that is an important in making a purchase. HP, puts a "thermal sensor" on their dimms, that forces you to buy their overpriced memory (also the reason they will use 1GB dimms, unless you spec otherwise).

    Third, if this is going to be a comparison, between three manufactures offerings, compare those offerings. I came away feeling I should buy an IBM system (which wasn't even "reviewed")

    Lastly read the critiques others have written here, most a very valid.
  • JohanAnandtech - Monday, September 13, 2010 - link

    "First off, please test comparable systems."

    I can not agree with this. I have noticed too many times that sysadmins make the decision to go for a certain system too early, relying too much on past experiences. The choice for "quad socket rack" or "dual socket blade" should not be made because you are used to deal with these servers or because your partner pushes you in that direction.

    Just imagine that the quad Xeon 7500 would have done very well in the power department. Too many people would never consider them because they are not used to buy higher end systems. So they would populate a rack full of blades and lose the RAS, scalability and performance advantages.

    I am not saying that this gutfeeling is wrong most of the time, but I am advocating to keep an open mind. So the comparison of very different servers that can all do the job is definitely relevant.
  • pablo906 - Saturday, September 11, 2010 - link

    These VMWare benchmarks are worthless. I've been digesting this for a long long time and just had a light bulb moment when re-reading the review. You run highly loaded Hypervisors. NOONE does this in the Enterprise space. To make sure I'm not crazy I just called several other IT folks who work in large (read 500+ users minimum most in the thousands) and they all run at <50% load on each server to allow for failure. I personally run my servers at 60% load and prefer running more servers to distribute I/O than running less servers to consolidate heavily. With 3-5 servers I can really fine tune the storage subsystem to remove I/O bottlenecks from both the interface and disk subsystem. I understand that testing server hardware is difficult especially from a Virtualization standpoint, and I can't readily offer up better solutions to what you're trying to accomplish all I can say is that there need to be more hypervisors tested and some thought about workloads would go a long way. Testing a standard business on Windows setup would be informative. This would be an SQL Server, an Exchange Server, a Share Point server, two DC's, and 100 users. I think every server I've ever seen tested here is complete overkill for that workload but that's an extremely common workload. A remote environment such as TS or Citrix is another very common use of virtualization. The OS craps out long before hardware does when running many users concurrently in a remote environment. Spinning up many relatively weak VM's is perfect for this kind of workload. High performance Oracle environments are exactly what's being virtualized in the Server world yet it's one of your premier benchmarks. I've never seen a production high load Oracle environment that wasn't running on some kind of physical cluster with fancy storage. Just my 2 cents.

Log in

Don't have an account? Sign up now