We hope you’ve enjoyed reading this article as much as we’ve enjoyed putting it together. If you took the time to thoroughly peruse and digest the information within the intricacies of basic memory operation should no longer be such a baffling subject. With the ground work out of the way, we now have a solid platform from which to build as we more closely begin exploring other avenues for increasing memory performance. We’ve already identified additional topics worth discussing, and provided the time shows up on the books, plan to bring you more.

Assumedly, the one big question that may remain: What are the real world benefits of memory tuning? Technically, we covered the subject in-depth last year in a previous article. We suggest you read through it once again for a refresher before you embark on any overclocking journeys (or before you rush out to over-spend on memory kits). Everything written in that article then is just as valid today. We’ve run tests here on our Gulftown samples and found exactly the same behavior. Undoubtably, Intel have taken steps to ensure their architectures aren't prematurely bottlenecked by giving the memory controller a big, fat bus for communicating with the DIMMs.

ASUS Rampage III Extreme married to 12GB of sweet, sweet DDR3-goodness

From what we can tell, the next generation of performance processors from Intel are going to move over to a 256-bit wide (quad channel) memory controller, leaving little need for ultra-high frequency memory kits. Thus we re-iterate something many have said before: a top priority when it comes to improving memory ICs and their respective architectures should be to focus development on reducing absolute minimum latency requirements for timings such as CAS and tRCD, rather than chasing raw synthetic bandwidth figures or setting outright frequency records at the expense of unduly high random access times.

Stepping away from the performance segment for a moment, something else that's also come to light is rumored news that Intel's Sandy Bridge architecture (due Q1 2011) will, by design, limit reference clock driven overclocking on mainstream parts to 5% past stock operating frequency. If this is indeed the case the consequence will be a very restricted ability to control memory bus frequency with limited granularity to tune the first 50~70 MHz past each step, followed by mandatory minimum jump of 200MHz to the next operating level. Accessing hidden potential will be even more difficult, especially for users of mainstream memory kits. While there is no downside to this from a processing perspective (hey, more speed is always better), this could be another serious nail in the coffin of an already waning overclocking memory industry.

We've Given You the Tools, Now Please Give Us the Help
Comments Locked

46 Comments

View All Comments

  • ekoostik - Tuesday, August 17, 2010 - link

    Great article. Going to take me a few more reads. One question - why no mention of Command Rate (and I double checked the Memory Scaling on Core i7 article, absent there too)? CR is often included in RAM specs, e.g. 9-9-9-24-2T, but never fully discussed if mentioned at all. Is it just not important anymore?
  • Muhammed - Tuesday, August 17, 2010 - link

    Ok I managed to royally confuse my self !

    What I know is that DDR3 operates at 1/8 the rated frequency , that means in case of DDR3 @800MHz , the internal memory operations are actually running at 100MHz , but the memory is able to fetch 8-words every clock cycle .

    So 100MHz X (8 words ) = 800 Word per second as data rate , then the manufacturer misleadingly label the RAM module as a 800MHz part .

    so the real benefit of DDR3 over DDR or DDR2 comes not from increased operating frequency , but from higher bandwidth .

    To stress that fact , I mention DDR2 @800MHz , it operates at 200Mhz (internal clock) , however it only fetches 4-words every clock cycle , (200X4 = 800 Words).

    When DDR3 operates at 200MHz (internal operations) like DDR2 , it fetches double the data , effectively managing 1600 words per second .

    NOW , in your article .. you mention the base clock (I/o Bus) and you mention the double data rate , I know the I/O Bus clock is always 2 or 4 times the internal clock , so DDR3 @ 100MHz , has a 400MHz I/O bus .. but I couldn't understand the I/O bus function and it's relation in data transmission and data rate .

    I am missing something here , could you enlighten me ?
  • Edison5do - Tuesday, August 17, 2010 - link

    I Really was Affraid..!!
  • Edison5do - Tuesday, August 17, 2010 - link

    Technical Reading !!! LOve This
  • hasherr - Wednesday, August 18, 2010 - link

    Great article. But what i dont get is how the hell motherboard knows all those timings? In SPDs there are like N timings described, isnt there really more? At least in bios settings i see more.

    Another thing. I buy Kingston 1800 MT/s module, with SPDs up to 1333 MTs. I overclock and make it run @ rated 1800mt/s speed. All timings are on auto. How the hell mobo/bios guess all of them :)?
  • ClagMaster - Wednesday, August 18, 2010 - link

    Afraid to Ask ?

    After perusing through this I find myself afraid to read.

    Comprehensive article for a novice EE
  • just4U - Wednesday, August 18, 2010 - link

    Great article and ...

    " ....should be to focus development on reducing absolute minimum latency requirements for timings such as CAS and tRCD, rather than chasing.."

    I hope the memory makers and shakers out there read that!!
  • lyeoh - Saturday, August 21, 2010 - link

    The mistake counter bit counts seem OK to me. In what way are they wrong?

    There are 9 MSB (most significant bits) in the table.

    Yes there are 13 bits in the counter, but the 9 bits in the table only refer to the 9 "top bits" of those 13 bits.

    For example, if I have an 8 bit counter but 4 bits in some table only refer to the 4 most significant bits, then that means that you'd only see all zeroes in those 4 bits when the counter has values from 0 to 15 (0x0 to 0xF). When the counter has values from 240 to 255 (0xF0 to 0xFF), you'd see all ones in those 4 bits.

    As for the description, I don't know the details of how the stuff works, so I don't know whether it's wrong or not.
  • dia - Saturday, August 21, 2010 - link

    Read the explanation here:

    http://download.intel.com/design/processor/datasht...
    Page 79.

    To quote:

    "MISTAKECOUNTER.
    This field is the upper 8 MSBs of a 12-bit counter. This counter adapts the
    interval between assertions of the page close flag. For a less aggressive page
    close, the length of the count interval is increased and vice versa for a more
    aggressive page close policy."

    Now look at the left hand column, it shows 8:0. That's 9 bits! It's a 13 bit counter.

    If it were a 12 bit counter the maximum permissible selection value would be 4095 and not 8191.
  • datasegment - Saturday, August 21, 2010 - link

    Quick fyi - 8k is not 8196, it is 8192 :)

Log in

Don't have an account? Sign up now