We hope you’ve enjoyed reading this article as much as we’ve enjoyed putting it together. If you took the time to thoroughly peruse and digest the information within the intricacies of basic memory operation should no longer be such a baffling subject. With the ground work out of the way, we now have a solid platform from which to build as we more closely begin exploring other avenues for increasing memory performance. We’ve already identified additional topics worth discussing, and provided the time shows up on the books, plan to bring you more.

Assumedly, the one big question that may remain: What are the real world benefits of memory tuning? Technically, we covered the subject in-depth last year in a previous article. We suggest you read through it once again for a refresher before you embark on any overclocking journeys (or before you rush out to over-spend on memory kits). Everything written in that article then is just as valid today. We’ve run tests here on our Gulftown samples and found exactly the same behavior. Undoubtably, Intel have taken steps to ensure their architectures aren't prematurely bottlenecked by giving the memory controller a big, fat bus for communicating with the DIMMs.

ASUS Rampage III Extreme married to 12GB of sweet, sweet DDR3-goodness

From what we can tell, the next generation of performance processors from Intel are going to move over to a 256-bit wide (quad channel) memory controller, leaving little need for ultra-high frequency memory kits. Thus we re-iterate something many have said before: a top priority when it comes to improving memory ICs and their respective architectures should be to focus development on reducing absolute minimum latency requirements for timings such as CAS and tRCD, rather than chasing raw synthetic bandwidth figures or setting outright frequency records at the expense of unduly high random access times.

Stepping away from the performance segment for a moment, something else that's also come to light is rumored news that Intel's Sandy Bridge architecture (due Q1 2011) will, by design, limit reference clock driven overclocking on mainstream parts to 5% past stock operating frequency. If this is indeed the case the consequence will be a very restricted ability to control memory bus frequency with limited granularity to tune the first 50~70 MHz past each step, followed by mandatory minimum jump of 200MHz to the next operating level. Accessing hidden potential will be even more difficult, especially for users of mainstream memory kits. While there is no downside to this from a processing perspective (hey, more speed is always better), this could be another serious nail in the coffin of an already waning overclocking memory industry.

We've Given You the Tools, Now Please Give Us the Help
Comments Locked

46 Comments

View All Comments

  • mupilot - Monday, August 16, 2010 - link

    Nice article, its very in depth, but easy to read! I'll have to read through a couple times if I truly want to understand how my memory works so I can actually understand what I'm doing when I overclock my memory and adjust the timings.
  • Cool Mike - Monday, August 16, 2010 - link

    I find memory a bit confusing. What type of memory would be best (or even work) on an AMD system - for example the Asus M4N98TD EVO. Will the lower voltage modules work? I'd like to get some pretty decent memory, but almost all of the discussions are around Intel based chipsets. Any help would be appreciated.
  • vajm1234 - Monday, August 16, 2010 - link

    ---- well i too wanna see a comparison how AMD works against the intel
  • PrinceGaz - Monday, August 16, 2010 - link

    Whilst the text for the Mistake Counter is incorrect, the bit count in the table does match the text-- the PARAMS2 register holds the 9, not 8 MSBs of each parameter (the internal values being 13 bit, not 12 bit), and the text and diagram both agree on this.
  • PrinceGaz - Monday, August 16, 2010 - link

    Oh and by the way, thankyou for an extremely informative article which has refreshed (hehe) and added to what I knew about how RAM operates and the effects of the main timings.
  • Icepop66 - Monday, August 16, 2010 - link

    Thanks for touching on some of the important aspects of sdram architecture and function and how they're related. My understanding is better now. Thanks for consistently good articles and reviews.
  • Gary Key - Monday, August 16, 2010 - link

    Rampage III Extreme -

    BIOS 0878 -
    1. Opened Memory Timing Selections for Ultimate Tweaking
    2. General Performance Enhancements for Overclocking
    3. AnandTech Memory Article BIOS - Support provided by ASUS USA Tech Support (that would be me).

    http://www.mediafire.com/?850dsymmc9j7jdd
  • lowenz - Monday, August 16, 2010 - link

    Simply AWESOME article!
  • Muhammed - Monday, August 16, 2010 - link

    You didn't mention the fact that (for example) DDR3 1600MHz actually works @200 MHz , and by fetching 8-bits per clock , it can effectively work like a 1600MHz RAM .

    DDR2 @800 MHz , actually works at 200MHz too but fetching 4-bits per clock .
    DDR@400 MHz , actually works at 200MHz too , fetching 2-bits per clock .
  • MrBrownSound - Monday, August 16, 2010 - link

    Thank you for helping me understand. Yes I was afraid to ask, or maybe I just felt I didn't need to know. I was wrong.

Log in

Don't have an account? Sign up now