If the Westmere Xeon EP were a car engine, it would've been made by Porsche. With "only" six cores, each core in the new Xeon offers almost twice the performance of the competition. A 32nm CPU that only occupies 248 mm2 the Westmere Xeon EP embodies pure refinement and intelligent performance, both Porsche traits. It's just made in Portland, not Zuffenhausen.

AMD's offering today is very different. Magny-cours is the CPU version of the American muscle car. It's a brutally large 12-core CPU: two dies, each measuring 346mm2 connected by a massive 24 link Hyper Transport pipe. AMD's Magny-cours Opteron has almost two billion transistors and 19.6MB of cache on-die.


12 cores, 692 mm2 die, 19.6MB of cache on-die

It's not all raw horsepower though. At 2.2GHz this 12-core monster is supposed to be content with only 80 precious watts, and 115W at most. HT assist also makes an appearance to keep CPU-CPU accesses to a necessary minimum, a problem that could get out of hand with 12 cores otherwise. AMD originally added HT assist with its first 6-core Opterons. So Magny-Cours is a like hybrid V12 Dodge Viper with traction control. Will this cocktail of raw core muscle and energy savings be enough to beat the competitor from Portland?

For once we could not resist the temptations of car analogies. As interesting as we found the Xeon Westmere EP, something was missing: a challenger, a competitor to make things more exiting.  In the last review, we just knew that the Xeon X5670 would crush the competition. This time is going to be close. AMD still won’t have a chance if your application does not scale well with extra cores. In that case you are better off with the higher clocked and better per-core performance of the Intel CPUs. But it is unclear if Intel will prevail in truly multi-threaded software now that a grim and determined AMD is willing to offer two CPUs for the price of one just to win the race.  

Magny-Cours
POST A COMMENT

58 Comments

View All Comments

  • Accord99 - Monday, March 29, 2010 - link

    The X5670 is 6-core. Reply
  • JackPack - Tuesday, March 30, 2010 - link

    LOL. Based on price?

    Sorry, but you do realize that the majority of these 6-core SKUs will be sold to customers where the CPU represents a small fraction of the system cost?

    We're talking $40,000 to $60,000 for a chassis and four fully loaded blades. A couple hundred dollars difference for the processor means nothing. What's important is the performance and the RAS features.
    Reply
  • JohanAnandtech - Tuesday, March 30, 2010 - link

    Good post. Indeed, many enthusiast don't fully understand how it works in the IT world. Some parts of the market are very price sensitive and will look at a few hundreds of dollars more (like HPC, rendering, webhosting), as the price per server is low. A large part of the market won't care at all. If you are paying $30K for a software license, you are not going to notice a few hundred dollars on the CPUs. Reply
  • Sahrin - Tuesday, March 30, 2010 - link

    If that's true, then why did you benchmark the slower parts at all? If it only matters in HPC, then why test it in database? Why would the IDM's spend time and money binning CPU's?

    Responding with "Product differentiation and IDM/OEM price spreads" simply means that it *does* matter from a price perspetive.
    Reply
  • rbbot - Saturday, July 10, 2010 - link

    Because those of us with applications running on older machines need comparisons against older systems in order to determine whether it is worth migrating existing applications to a new platform. Personally, I'd like to see more comparisons to even older kit in the 2-3 year range that more people will be upgrading from. Reply
  • Calin - Monday, March 29, 2010 - link

    Some programs were licensed by physical processor chips, others were licensed by logical cores. Is this still correct, and if so, could you explain in based on the software used for benchmarking?
    Reply
  • AmdInside - Monday, March 29, 2010 - link

    Can we get any Photoshop benchmarks? Reply
  • JohanAnandtech - Monday, March 29, 2010 - link

    I have to check, but I doubt that besides a very exotic operation anything is going to scale beyond 4-8 cores. These CPUs are not made for Photoshop IMHO. Reply
  • AssBall - Tuesday, March 30, 2010 - link

    Not sure why you would be running photoshop on a high end server. Reply
  • Nockeln - Tuesday, March 30, 2010 - link

    I would recommend trying to apply some advanced filters on a 200+ GB file.

    Especially with the new higher megapixel cameras I could easilly see how some proffesionals would fork up the cash if this reduces the time they have to spend in front of the screen waiting on things to process.


    Reply

Log in

Don't have an account? Sign up now