Power Consumption

I had to overvolt the sample to reach 2.66GHz and I didn't want to compare power of an overclocked CPU to other standard CPUs, so the table below uses the Lynnfield 2.13GHz chip with HT enabled. I also noticed some odd power readings which may be due to the early nature of the platform I was testing so I posted a range of power consumption values for the load.

Processor Idle Power Load Power (x264 1st pass)
Intel Lynnfield 2.13GHz 94.0W 160W - 173W
Intel Core 2 Quad Q8400 (2.66GHz) 126.3W 170.9W


In my limited amount of time with the test setups I didn't have any other lower clocked quad-core chips to compare to but these early results look promising. The idle power in particular is most impressive.

Thanks to Nehalem's ability to completely power down idle cores the Lynnfield sample delivers the lowest idle power of any quad-core CPU I've ever tested. I didn't have time to investigate it here but I suspect that in scenarios where only two cores are busy, Lynnfield will offer significant power savings compared to all older (non-Nehalem) quad-core CPUs.

Final Words

It really took me until I reached the very end of writing this article to understand Lynnfield and where it fits into Intel's lineup, but I think I finally get it.

The $284 Lynnfield 2.80GHz chip should be very powerful. If I'm guessing right, it'll be faster than any dual core Core 2 Duo in applications that spawn one or two CPU intensive threads, while being faster than a Core i7-920 in even heavily threaded applications.

The $196 Lynnfield 2.66GHz processor stops from being absolutely perfect by not having Hyper Threading enabled. While it performs very i7-920-like in many cases, highly threaded workloads favor the rest of the LGA-1156/1366 lineup. That being said, not having HT isn't the end of the world; in many cases it's just as fast as it would be with HT enabled.

What Intel has done with the entry level Lynnfield is piece together a Nehalem that's just good enough to compete with the high end Phenom IIs and give you more bang for your buck than the existing Core 2 Quads, while not being too good as to ruin the point of the midrange Lynnfield.

There's also a lot of flexibility in Intel's strategy. Intel could deliver lower clocked Lynnfields and enable HT to be competitive at lower price points. I suspect that the real strength of Lynnfield is in its turbo modes; they will give it the advantage of delivering maximum performance regardless of how threaded your workload is.

Why would anyone want a LGA-1366 system then? I believe there are three major advantages to the LGA-1366 platform for single-socket desktops:

1) Support for Gulftown. You can only get 6-cores from the LGA-1366 platform in 1H 2010, Intel currently doesn't have any 6-core LGA-1156 parts planned.

2) More overclockable CPUs. The best yielding Nehalems (and highest clocked Nehalems) will be LGA-1366 processors. I wouldn't expect any 1GHz+ overclocks from LGA-1156 CPUs.

3) More bandwidth to PCIe slots. I don't see this as a huge advantage today, but there may come a time when having as much bandwidth to your GPUs as possible is important. I'm thinking general purpose GPU computing, DX11, OpenCL sort of stuff. But we're not there yet.

Ultimately I'm going to stick with what I first said on the whole LGA-1156 vs. LGA-1366 topic last November:

"The breakdown seems pretty simple: if you’re the type of person who bought the Q6600/Q9300, then Lynnfield may be the Nehalem for you. If you spent a bit more on your CPU or are more of an enthusiast overclocker, the current Core i7 seems like the path Intel wants you to take."

Lynnfield, today, looks very good. Enable all of its turbo modes and I believe Intel has another winner on its hands. When Nehalem first launched I complained that the move to a smaller L2 cache kept it from significantly outperforming Penryn in some applications and games. With Lynnfield's turbo modes I believe my complaints will be addressed; need better performance in games? Turbo mode solves that. In many ways, Lynnfield could end up being even more significant than Core i7 ever was.

Penryn was always good, Bloomfield was nice to talk about but Lynnfield may end up being the one you marry.

Gaming Performance
Comments Locked

95 Comments

View All Comments

  • TA152H - Saturday, May 30, 2009 - link

    Actually, Jarrod, your logic is flawed.

    AMD does that triple core and dual core so they can salvage processors that would be thrown out. Also, dual core can be faster than quad, since you can generally clock higher, since you have less heat and your limit is only the slowest of two cores, not four. But, in any event, there are a lot of instances where going to four cores is not going to help much. The Lynnfield is slower in a lot more things.

    You're also confused about dual-channel and tri-channel. I never said dual-channel was bad, I said Lynnfield was. The i7 with dual channel performs better than the Lynnfield, so don't get the two confused.

    The difference in performance between the i7 and Lynnfield is dramatic considering they are the same except for the memory controller. Anyone here who buys a Lynnfield is probably making a mistake, since it's easy to overclock the i7, and you can't fix the brain-damaged Lynnfield.

    What your saying is what I have been. Stick with the i7 and let it go down in price, instead of crippling it and selling that as the lower cost part. Where I disagree with you is, I don't think the i7 platform is going to be much less expensive to make. Maybe you have the sizes for all the parts, but I don't think you'll see a significant difference in the costs. A lower end chipset without so many PCIe lanes for the i7 could have brought the system costs a lot closer, and you wouldn't have to castrate the processor.

    Also, because now you have more functions on the processor, it's very possible it will not clock as high. It will, after all, generate more heat, presumably, since it's got more on it.

    I don't think Intel made a good compromise with this. To lose so much performance with just a memory controller change is shocking to me. Maybe it's new silicon, and maybe that's most of the performance loss, but it doesn't make sense to me. It's not the same as a smaller L2 cache that makes the processor a lot smaller. Or salvaging processors that would otherwise be thrown out, where there is a very meaningful cost difference. This seems more like a market segment type of thing.

  • JarredWalton - Saturday, May 30, 2009 - link

    I think you're putting WAY too much emphasis on these early benchmarks. I expect final Lynnfield to perform faster than the i7-920 in most cases (outside of heavily threaded workloads like 3D rendering). There are tons of people that:

    A) Never do 3D rendering
    B) Never do video encoding/transcoding
    C) Never overclock

    For those users, the enhanced Turbo on Lynnfield combined with lower costs makes perfect sense. We are after all looking at a platform cost that will be about $150 less than Core i7 + mobo, plus you buy RAM in pairs instead of triplets.

    We'll have to see how Lynnfield clocks with final CPUs before making any judgments; I certainly don't think the sample Anand has is representative of final chips in performance, clocking, or various other areas. As he mentions, the motherboard BIOS releases still look like they're not ready for the public, and that can make up for the "huge" 5% performance gap.

    For people looking at faster dual-core chips for gaming (i.e. Core 2 Duo E8500/E8600), I suspect that the Lynnfield will outperform them across the board, with or without overclocking. They'll be about the same price too, all told.
  • GeorgeH - Friday, May 29, 2009 - link

    When the "real" test comes out, I'd be very curious to hear your thoughts on the USB, SATA, and PCIe 3.0 standards, as all three have been rumored to be out in late 2009 or early 2010. With PCIe 2.0 integrated onto the CPU and USB/SATA 2.0 being locked in on the motherboard (ignoring add-on cards) it seems as if first gen systems could end up being a major loser in terms of longevity and upgradeability.
  • jmke - Friday, May 29, 2009 - link

    When I got to the last page and started reading the Why would anyone want a LGA-1366 system then? , I got a nasty flashback. S939 vs S754: we all knew S754 was a dead end, right from the start; why o why is Intel taking this same decisions? Build one platform, let it scale all the way up and down; why force people to upgrade motherboard to upgrade their CPU :-/
  • philosofool - Saturday, May 30, 2009 - link

    Because you and I, the DIY system builders, represent about 0.3% of the market for computers. Socket decisions are driven entirely by the needs of Intel, Dell, HP and the rest of the network of manufactures. Those people want an inexpensive successor to LGA 775, which 1366 was not. I'm not sure why intel wanted a performance socket, but I don't think 1366 is leaving the scene. It will just be part of the "high end" market. LGA 1156 will include mainstream parts eventually. However, looking at the cost of Core i5, I have to say that I'm probably not canceling my plan to upgrade to a Phenom X3 720.
  • Depeche - Friday, May 29, 2009 - link

    If it wasn't for AMD Intel would just price their processors whatever they want it to be. AMD is out there so that Intel drops their prices :)
  • lopri - Friday, May 29, 2009 - link

    is what Intel wants, obviously. And it is succeeding. More sockets, more patents, more incompatibility... and We're going back to $200, $500, $1,000 tiers in CPU prices. I'm surprised that you have no complaint, Anand. Well, actually you think the opposite! (Page 2: Making Nehalem Affordable??) Wow!

    quote:

    no additional ICH is necessary as all of that functionality is embedded in the PCH.

    Umm..? I thought PCH was just a new name for ICH. Is there any other functionality in PCH that does not exist in ICH?

    Apparently Intel saw the danger of 3rd party PCBs for Lynfield CPUs, and that is why these CPUs are priced so high despite being designated as "Mainstream". (Though I am certain Intel will do anything it can to prevent 3rd party to develop motherboards for these CPUs - at least until DOJ threatens it with anti-trust investigations)

    Forgetting all the dirty business stuff, Lynfield is no doubt an admirable piece of silicon. It is a fine engineering that no one else has achieved yet. I'm anxious to get my hands on it when it's out. I have an i7 920 sitting in a box for nearly two weeks now because I can't seem to find a board that suits my needs/wants. I hope we'll see variety of creative motherboards for Lynfield CPUs now that these CPUs aren't (presumably) shackled to QPI BS.
  • Anand Lal Shimpi - Friday, May 29, 2009 - link

    Note that these are performance desktop parts. They are mainstream for quad-core CPUs but not designed for the sub-$500 system market. You will see 32nm Westmere derivatives in the $100 - $200 range and eventually even lower.

    Third party motherboard makers already have P55 boards in development for Lynnfield, the majority of P55 boards for Lynnfield won't be made by Intel.

    Take care,
    Anand
  • Kary - Friday, May 29, 2009 - link

    I think this was more a reference to third party CHIPSETS

    Like Nvidia's ION upset Intel

    Different manufactures using the same chipset don't really make that different of boards (compared to completely different chipsets made into boards by different manufacturers)
  • Anand Lal Shimpi - Friday, May 29, 2009 - link

    The chipset honestly doesn't do much these days. It acts as a PCIe switch and delivers basic standards: USB, SATA, GigE, etc... Long term I think we'll see that AMD makes AMD chipsets and Intel makes Intel chipsets, I don't see much room for someone like NVIDIA there.

    Where NV does add value is in graphics, and there's nothing preventing NVIDIA from continuing to deliver graphics to both Intel and AMD platforms. I don't believe we'll see much of a future in 3rd party integrated graphics chipsets on either AMD or Intel platforms, both manufacturers will be bringing graphics on-package.

    At this point I view NVIDIA's platform strengths as being predominantly in mobile applications (think MIDs, smartphones, notebooks) and unfulfilled niches like Atom + Ion. On the graphics side, NVIDIA is quite strong, it's just the platform strength that has eroded over time.

    Take care,
    Anand

Log in

Don't have an account? Sign up now