Packaging and Appearance


The power supply comes in a somewhat understated black box, and unlike some competitors it doesn't contain all sorts of extraneous details on the various sides. The front of the box only shows a picture of the power supply and its name, while the back is a little more informative and includes the specifications and an outline of the major features. Inside the package, there's a plastic cover providing some small protection for the power supply (and keeping various bits from falling out during shipping). You also get a manual on a CD (highly useful for assembling a system, especially if you're building your first system!), power cord, screws, and a card detailing the warranty and discussing the proper disposal of electronic components.


Cooler Master certainly created a unique looking product, as the power supply is coated with a rough texture and it has rounded edges. It seems they are going after the "heavy-duty" look, and the surface looks somewhat like the lining of a truck bed. The fan grille has the same coating and includes the obligatory Cooler Master logo. The grille is connected using hex screws, either because they simply look cleaner or to try and keep prying hands out of the internals. Regular Phillips screws would have done just as well.

The back of the unit is perforated by many small holes in order to provide proper ventilation. Cooler Master uses a large specialized power connector for the plug, typical of their high-end units. There's also a power switch and an LED that glows white when the PSU is connected to the power grid. Besides the ventilation holes at the rear of the power supply, the only other place for air to enter or exit the casing is through the fan grille. This should help to direct airflow, provide optimal cooling, and avoid creating extra turbulence.

Index Cables and Connectors
Comments Locked

33 Comments

View All Comments

  • MrOblivious - Tuesday, July 29, 2008 - link

    Sorry meant to say seems to be indicated in the article in my last line.
  • Adamantine - Tuesday, July 29, 2008 - link

    There are four 12v rails, yet you only show regulation on a single rail, not even labeled at that... where are the voltage regulation line graphs for the other 3 rails, if there are in fact 4 rails?
  • jonnyGURU - Tuesday, July 29, 2008 - link

    +12V rails are rarely independent. Usually "multiple" +12V rails is just a +12V rail split up into four, six, etc. with an over current protection circuit in place for each. If there's any "regulation" difference between one +12V rail and another, it's usually caused by resistance between the +12V source and the end of the connector and NOT actual poor voltage regulation. So the best course of action would actually be to average out the results or combine +12V rails into one.

    More on "multiple" +12V rails: http://forums.anandtech.com/messageview.aspx?catid...">http://forums.anandtech.com/messageview.aspx?catid...
  • Christoph Katzer - Tuesday, July 29, 2008 - link

    ehm we combined them into one graph, that's why they are so thick ;) The graph shows in which area all of the rails have been regulated. We had shown differently before but with six rails for example you cant see anything anymore...
  • SilthDraeth - Tuesday, July 29, 2008 - link

    I read the review and I saw you nitpick about a few things, but I didn't read about any real problem.
  • JarredWalton - Tuesday, July 29, 2008 - link

    The 12V rail problem is that 12V1 (rated at 25A) supplies the power for the 24-pin connector, the 4-pin ATX12V connector, and all the SATA and Molex connectors. Meanwhile, 12V2 *only* powers the EPS12V connector (which quite a few people won't even use!), and 12V3 and 12V4 are dedicated to the PEG connectors.

    Basically, there's a lot of stuff coming off of the main 12V rail, and thus it's going to be virtually impossible to come anywhere near the rated output unless you happen to have an EPS12V connector on your motherboard. More important is that with the right combination of hardware (i.e. quad-core overclocked CPU, a high-end GPU, and several HDDs) you could easily overload 12V1.
  • strikeback03 - Wednesday, July 30, 2008 - link

    The EPS12V is the 8-pin CPU connector, correct? The same one that seems to be far more common these days on the class of motherboards likely to be used with a 900W PSU than the 4-pin connector?
  • JarredWalton - Wednesday, July 30, 2008 - link

    I don't know that I would call EPS12V "common". It's used on some high-end mobos, but not on others. It was initially more of a workstation/server connector. Some PSUs have a 4/8-pin cable that works with either ATX12V or EPS12V, but it seems Cooler Master decided to go with a dedicated ATX12V and a dedicated EPS12V. It would have made a lot more sense IMO if they had all of the peripherals on the same rail as the EPS12V (and ATX12V for that matter).
  • Bozo Galora - Tuesday, July 29, 2008 - link

    Weren't you going to add ripple and noise tests?
    Or do I have the wrong recollection?
    These guys say it had 78mv on 12V line
    http://www.techpowerup.com/reviews/CoolerMaster/UC...">http://www.techpowerup.com/reviews/CoolerMaster/UC...
  • Amart - Tuesday, July 29, 2008 - link

    Anandtech are not interested in presenting a complete professional review of PSU's, instead they have stated we should "trust them" on ripple and noise questions.

    I think that Anandtech PSU reviews should look at JonnyGuru.com and HardOcp.com and take notes on how to do things right.

Log in

Don't have an account? Sign up now