Overclocking Intel's New 45nm QX9650: The Rules Have Changed
by Kris Boughton on December 19, 2007 2:00 AM EST- Posted in
- CPUs
Select a Memory Divider and Set Some Timings
The latest generation of Intel memory controllers provides a much more expansive choice in memory dividers than ever before. That said, there are only three that we ever use, the most obvious of these being 1:1. Setting 1:1, simply put, means that the memory runs synchronously with the FSB. Keep in mind though that the FSB is quad-pumped (QDR) and memory is double data rate (DDR). For example, setting an FSB of 400MHz results in a 1.6GHz (4 x 400) effective FSB frequency at DDR-800 (2 x 400), assuming your memory is running 1:1. Selecting 5:4 at an FSB of 400MHz sets a memory speed of DDR-1000 (5/4 x 2 x 400). The other two dividers we would consider using besides 1:1 are 5:4, and in the case of DDR3, 2:1.
Regrettably, there are rarely any real performance gains by moving to memory ratios greater than 1:1. While it is true that many synthetic benchmarks will reward you with higher read and copy bandwidth values, the reality of the situation is that few programs are in fact bottlenecked with respect to total memory throughput. If we were to take the time to analyze what happens to true memory latency when moving from DDR2-800 CAS3 to DDR2-1000 CAS4, we would find that overall memory access times might actually increase. That may seem counterintuitive to the casual observer and is a great example of why it's important to understand the effect before committing to the change.
Start your next phase of tuning by once again entering the BIOS and selecting a memory divider. As mentioned earlier, even though there are many choices in dividers you will do best to stick to either 1:1 or 5:4 when using DDR2 and 2:1 when running DDR3. Next set your primary timings - typically, even the worst "performance" memory can handle CAS3 when running at about DDR2-800, CAS4 to about DDR2-1075, and CAS5 for anything higher. These are only approximate ranges though and your results will vary depending on the design of you motherboard's memory system layout, the quality of your memory, and the voltages you apply. You may find it easiest to set all primary memory timings (CL-tRCD-tRP) to the same value when first testing (i.e. 4-4-4, 5-5-5, etc.), and as a general rule of thumb, cycle time (tRAS) should be set no lower than tRCD + tRP + 2 when using DDR2 - for DDR3 try to keep this value between 15 and 18 clocks inclusive.
Failure of the board to POST (Power On Self-Test) after adjusting memory settings is a strong indication that either: A) you've exceed the memory's maximum possible frequency - choose a divider that results in a lower memory speed; B) the timings are too tight (low) for the attempted speed - loosen the values and try again; or C) the particular frequency/timing combination is possible, but not at the voltage currently applied - raise the memory voltage. Not all failure to POST conditions will have a solution. Some motherboards simply refuse to run certain memory dividers and we're finding more and more memory modules these days that are just flat out incapable of running the tighter timings possible with the previous generation's products.
Booting to the Windows desktop is always a pretty good indication that you are at least close to final stable values when it comes to memory. Again, start Prime95 and run at least 30 minutes of the blend test. Failures, especially rounding errors, are strong indications of memory problems. If you encounter errors, reset the system and increase the memory voltage by a small amount, always remembering to stay within specified limits. If you continue to experience errors, regardless of memory voltage, then you should loosen the primary timings and continue the testing. Once you have managed to "prime" for 30 minutes or more you can move on to the final phase - overclocking the CPU.
56 Comments
View All Comments
Griswold - Thursday, December 20, 2007 - link
I think the other explanation for the delay is much more likely than this horsecrap.tomoyo - Wednesday, December 19, 2007 - link
This is a great article from both a readability and technical standpoint, I found it very enjoyable to actually read the commentary, which I cannot say is true for 95% of tech reviews. Also the graphs and information presented were extremely useful. I love the demystifying of the vdroop issue to prove that it's a GOOD thing.Amiteriver - Wednesday, December 19, 2007 - link
Finally a review with some understandable explanations of Bios settings and there realation ships. As the motherboards change you get new Bios names for things and your eyes glaze over wondering what the heck some of the terms mean. Look forward to future articles of popular motherboards Bioses. I will be printing this article out. Thanks muchAmiteriver - Wednesday, December 19, 2007 - link
Finally a review with some understandable explanations of Bios settings and there realation ships. As the motherboards change you get new Bios names for things and your eyes glaze over wondering what the heck some of the terms mean. Look forward to future articles of popular motherboards Bioses. I will be printing this article out. Thanks muchSczee - Wednesday, December 19, 2007 - link
Quite possibly the best article on computer hardware I have ever read. I learnt a lot about overclocking from it and plan to put it to use tonight. I'll be looking out for your next piece Kris.Bozo Galora - Wednesday, December 19, 2007 - link
ya, the X48 is being delayed because some top tier mobo manuf needs to get rid of its X38 inventory. My guess is Asus, because they have the muscle to influence Intel. Bleh.So I bought all this super xmas bargain stuff, and now I am going to have to let it gather dust - lol
http://www.digitimes.com/mobos/a20071217PD205.html">http://www.digitimes.com/mobos/a20071217PD205.html
Bozo Galora - Wednesday, December 19, 2007 - link
and the X48 does seem to have a 450-460 cap, at least so farhttp://en.hardspell.com/doc/showcont.asp?news_id=1...">http://en.hardspell.com/doc/showcont.asp?news_id=1...
bryanW1995 - Wednesday, December 19, 2007 - link
Best article I've read here in a long time. Good job.Regs - Wednesday, December 19, 2007 - link
So lets say I have a 65nm Core Duo running between 0.850V-1.3525V. These are the product specs, which I guess .850 is the low limit and 1.325 is the high limit. Why does the voltage have to decrease depending on load? Is it just as simple as "supply and demand"? How does running the CPU at 1.352v run the risk of instability?Aivas47a - Wednesday, December 19, 2007 - link
Great article. You guys have really been distinguishing yourselves with in-depth work on overclocking the last few months: exploring obscure bios settings, tinkering with "extreme" cooling -- keep it up!My experience with a qx9650 so far is very similar to yours: easy scaling to 4 ghz, difficult scaling after that with 4.2 ghz being the practical max for regular operation (folding, etc.).
One issue I will be interested to see you address in the future is fsb overclocking on yorkfield. So far I am seeing yorkfield top out at lower fsb (450-460) than was possible for kentsfield on a comparable P35 or X38 platform. That is not so significant for the unlocked Extreme Edition chips, but could make it difficult to achieve the magic 4 ghz with the q9550 and especially the q9450.